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GRAPHICAL ABSTRACT

Abstract Kolbe electrosynthesis, at low current densities, of 1,2-diphenylethane and

1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane with 77 and 72% yields, respectively, is described.

Keywords Dimerization; Kolbe electrosynthesis; oxidation; radical reactions

INTRODUCTION

The Kolbe synthesis[1] is considered to be the first electro-organic reaction of
interest in the synthesis of natural products.[2] Recently, this reaction has been
carried out by photochemistry,[3] sonoelectrosynthesis using a biphasic system as

Received November 9, 2009.

Address correspondence to António J. Mendonça, Departamento de Quı́mica, Universidade da
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solvent,[4,5] solid polymer electrolyte (SPE) composite electrode,[6] and solid-phase
organic synthesis.[7–9]

The Kolbe reaction consists of the oxidative decarboxylation of a carboxylic
acid with the formation of a radical intermediate that can react in coupling reactions.
Depending on the experimental conditions, the anodic decarboxylation of carboxy-
lates, generated from carboxylic acids, can afford radicals (Kolbe electrolysis) or car-
bocations (non-Kolbe electrolysis)[10] at the anode, in a selective fashion. The
radicals can be used in homo- and heterocoupling or in inter- and intramolecular
addition reactions to double bonds.[11] The selectivity of the Kolbe synthesis is
strongly dependent on the chemical structure of carboxylic acid(s) and on the experi-
mental conditions.[10] The Kolbe reaction mechanism involves an initial electron
transfer from the carboxylates at the anode, giving rise to a radical that can decar-
boxylate, and the radicals combine between them, producing the dimer.[12] If a cation
is formed, it may react in a non-Kolbe reaction, namely by substitution, dispropor-
tionation, C-C bond cleavage or rearrangement, affording compounds such as alco-
hols, ethers, esters, and amides.[13] The best conditions to obtain the dimer are high
current density, 0.25V–1.0A=cm2, platinum electrodes, neutral or slightly acidic
aqueous methanol as solvent, and temperatures less than 50 �C.[10]

In this work, we describe the electrosynthesis of 1,2-diphenylethane and
1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane at low current density. The synthesis of 1,2-
diphenylethane at high current density was described previously.[14]

RESULTS AND DISCUSSION

Electrosynthesis of 1,2-Diphenylethane

A solution of phenylacetic acid 1 0.8M was electrolyzed at platinum electrodes
using a current density of 15mA � cm�2 in MeOH=Py, in the presence of 10% of
sodium methoxide (NaOMe), which was used to neutralize the carboxylic acid at
a controlled temperature of 19 �C (Scheme 1). The expected product, 1,2-dipheny-
lethane 2, was obtained in 2.5% yield (Table 1, entry 1). To improve the dimer yield,
we studied the influence of the concentration of NaOMe. We found that an increase

Scheme 1. Kolbe electrosynthesis of 1,2-diphenylethane.
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on the concentration from 10% to 50% led to a decrease in the yield of 2 to 0.4%
(Table 1, entry 2). The influence of the electrode’s size was also explored, and an
increase from 1.1� 1.1 cm2 to 2.5� 2.5 cm2 in the presence of 10% NaOMe led to
a mass yield (gm) of 77% with a current efficiency (gc) of 29% (Table 1, entry 3).
A higher current efficiency (55%) using a current density of 128mA � cm�2 was
reported.[13] The dimer 2 was identified by nuclear magnetic resonance spectra (1H
and 13C), and its melting point is in good agreement with that reported.[14] The num-
ber of electrons obtained in the formation of the dimer was 1.6 e� instead of 1. This
is because of the formation of by-products from non-Kolbe reactions, observed as
high-polarity compounds in thin-layer chromatography (TLC).

Electrosynthesis of 1,2-Di(bicyclo[2.2.1]heptan-2-yl)ethane

The electrosynthesis of 1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane 4 (Scheme 2)
starting with 0.8M 2-norbornaneacetic acid 3 was also carried out at constant cur-
rent with a density of 15mA � cm�2 in MeOH=Py (4:1) in the presence of 10% of
sodium methoxide, at a constant temperature (19 �C) at platinum electrodes
(2.5� 2.5 cm2). The number of electrons involved in the reaction per molecule of
2-norbornaneacetic acid was equal to 2. Again, as in the electrosynthesis of 1,2-
diphenylethane, this value is a result of the formation of by-products by non-Kolbe

Scheme 2. Kolbe electrosynthesis of 1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane.

Table 1. Electrosynthesis of 1,2-diphenylethane by electrolysis of phenylacetic acid (0.8M) at platinum

electrodes and at constant current density (15mA � cm�2) in MeOH=Py (4:1)

NaOMe

(%)

Electrodes

(cm2)

Time

(h)

Temperature

(�C)
Charge

(C)

Product 2 (%)

Entry na gm gc

1b 10 1.1� 1.1 7.00 5 915 0.5 2.5 3.4

2b 50 1.1� 1.1 7.47 5 976 0.5 0.4 0.4

3c 10 2.5� 2.5 9.37 19 6325 1.6 77 29

aNumber of electrons involved per molecule of phenylacetic acid.
bTotal volume of electrolyte solution was 25 cm3.
cTotal volume of electrolyte solution was 50 cm3.

Note. gm¼ [obtained mass of dimer (g) = theoretical mass of dimer (g)]� 100; gc¼ [moles of product

obtained by a charge c = theoretical moles of product obtained by a charge c]� 100.
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reactions, observed as polar compounds in TLC. The expected product, 1,2-
di(bicyclo[2.2.1]heptan-2-yl)ethane (4), was obtained in a mass yield of 72% and a
current efficiency of 71%. 1H NMR, 13C NMR, 1H–1H correlation spectroscopy
(COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple-
bond correlation (HMBC), and mass spectrometry (MS) data (Scheme 3) were
consistent with the dimer 4 structure.

CONCLUSIONS

These results demonstrate that Kolbe synthesis can be carried out under experi-
mental conditions that are not favorable to dimer formation. In fact, it is reported[10]

that high current densities are needed to obtain the desired dimer. However, the
dimers, 1,2-diphenylethane and 1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane, were
obtained from the electro-oxidation of phenylacetic and 2-norbornaneacetic acids,
respectively, in yields better than 70% at low current density and at room tempera-
ture. Thus, we have developed a ‘‘green’’ methodology that enables the reaction to be
carried out under mild conditions, operating at room temperature using low current
densities. Moreover, the product, 1,2-di(bicyclo[2.2.1]heptan-2-yl)ethane, is new, and
this work describes it for the first time.

EXPERIMENTAL

Phenylacetic acid (Merck, >99%), 2-norbornaneacetic acid (2-(bicyclo[2.2.1]
heptan-2-yl)acetic acid) (Sigma-Aldrich, >98%), pyridine (Sigma-Aldrich, >99%),
sodium methoxide (Fluka, �97%), and methanol (Sigma-Aldrich, >98%) were used
as received. TLC was carried out on Merck silica-gel 60 F254 TLC plates. Melting
points were measured on a Büchi melting-point B-540 apparatus. Electron impact
mass spectrometry (EIMS) was carried out on a VG Autospec M and recorded at

Scheme 3. Partial sequence of fragmentation for compound 4.
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70 eV; 1H and 13C NMR spectra were recorded on a Bruker AC 250P spectrometer
or a Bruker Avance II, at 600MHz (1H NMR) and 150.9MHz (13C NMR) in
CDCl3. Chemical shifts are given in parts per million (ppm) and were measured
versus residual peak of the solvent, 7.26 ppm for 1H and 77.0 ppm for 13C.
Two-dimensional experiments (1H–1H COSY, HSQC, HMBC) were performed with
standard Bruker software and were carried out for complete assignment of proton
and carbon signals in the NMR spectra.

Constant-Current Electrolysis

Electrolyses were carried out in a single-compartment glass cell with two Pt foil
electrodes separated by 5mm, under magnetic stirring at a constant current of
15mA=cm2 using a dc power supply (Good Will Instruments GSP-3030D). Electro-
lyte solution volumes were 25 cm3 or 50 cm3, using 1.1� 1.1 cm2 or 2.5� 2.5 cm2 elec-
trodes, respectively. The carboxylic acid was dissolved in MeOH=Py (4:1) and
partially neutralized with NaOMe. The electrolysis was carried out at room tempera-
ture, until the pH of electrolyte solution was approximately 8. During the reaction,
every 30min, the polarity inversion was performed to avoid electrode passivation.
After the electrolysis, the reaction mixture was extracted with chloroform
(3� 20 cm3) and washed with water. The combined organic extracts were dried
(Na2SO4) and concentrated. The crude residue was submitted to column chromato-
graphy over silica gel G (230–400 mesh) using n-hexane=ethyl acetate gradients of
increasing polarity as solvent.

1,2-Diphenylethane (2)

White crystals; mp 50.1–51.3 �C; IR (nujol) 3086, 3064, 3031 (t arC-H), 2960,
2927, 2856 (t C-H), 1947, 1881, 1810, 1775 (comb monosubst.), 1599, 1487 (t
arC-C), 1146, 1027, 968 (dip arC-H), 909, 752, 699 (doop) cm�1; 1H NMR
(250MHz, CDCl3), d 2.95 (s, 4H, H-1 and H-2), 7.15–7.24 (m, 7H, H aromatic),
7.28–7.35 (m, 3H, H-aromatic); 13C NMR (63MHz, CDCl3), d 38.1 (C-1 and
C-2), 126.4 (C-40 and C-400), 128.6 (C-20, C-60, C-200 and C-600), 128.9 (C-30, C-50,
C-300 and C-500), 141.9 (C-10 and C-100).

1,2-Di(Bicyclo[2.2.1]heptan-2-yl)ethane (4)

White crystals; mp 98.3–99.2 �C; IR (nujol) 2952, 2933, 2873, 2854 (t C-H),
1455 (d CH2) cm�1; 1H NMR (600MHz, CDCl3), d 1.17–1.21 and 0.97–1.04 (m,
4H, H-60 and H-600), 1.23–1.28 (m, 2H, H-20 and H-200), 1.24–1.28 (m, 4H, H-1
and H-2), 1.34–1.41 and 0.93–1.00 (m, 4H, H-70 and H-700), 1.39–1.46 and
1.04–1.10 (m, 4H, H-30 and H-300), 1.42–1.46 and 1.08–1.12 (m, 4H, H-40 and
H-400), 1.89–1.94 (m, 2H, H-10, H-10), 2.11–2.16 (m, 2H, H-50, H-500); 13C NMR
(150.9MHz, CDCl3), d 28.9 (C-30 and C-300), 30.2 (C-40 and C-400), 35.3 (C-60 and
C-600), 35.3 and 35.4 (C-1 and C-2), 36.6 (C-50 and C-500), 38.4 (C-70 and C-700),
41.2 (C-10 and C-100), 42.5 (C-20 and C-200); EIMS (%) m=z 218 (5) [M]þ, 190 (11),
135 (8), 121 (10), 108 (15), 95 (100).
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