BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 43 2925—2933 (1970)

The Cyclization of Ethyl Cyanoacetate and Salicylaldehyde or 3-Methoxysalicylaldehyde with Ketones by Means of Ammonium Acetate

Akio Sakurai and Hiroshi Midorikawa

The Institute of Physical and Chemical Research, Yamato-Machi, Saitama

and Yasuo Наянімото

Tokyo Electrical Engineering College, Nishikicho, Chiyoda-ku, Tokyo (Received March 26, 1970)

Various substituted benz[f]isoquinolines were readily prepared by the condensation of ethyl cyanoacetate and salicylaldehyde or 3-methoxysalicylaldehyde with aliphatic ketones (acetone, diethyl ketone, methyl pentyl ketone, methyl isopentyl ketone, etc.) or aromatic ketones (acetophenone, o-hydroxyacetophenone, m-nitroacetophenone, propiophenone, etc.) in the presence of ammonium acetate. On the other hand, condensation with cyclic ketones such as cyclopentanone and cyclohexanone gave benz[f]cyclopent[c]isoquinolines and benzo[k]phenanthridines respectively.

Previous papers have shown that ethyl cyanoacetate condensed with ketones¹⁾ (aliphatic methyl, aromatic, cyclic, and α,β -unsaturated) or aldehydes²⁾ (salicyl and 3-methoxysalicyl) in the presence of ammonium acetate to afford substituted pyridones, quinolines (from ketone), and benzo-[h]quinazolines (from aldehyde).

The present paper will deal with the syntheses of 6-oxabenz[f]isoquinoline, 7-oxabenz[f]-2,3-di-hydro-1H-cyclopent[e]isoquinoline, and 8-oxa-1,2,3,4-tetrahydrobenzo[k]phenanthridine derivatives by the condensation of ethyl cyanoacetate, salicylaldehyde, or 3-methoxysalicylaldehyde, and a variety of ketones in the presence of ammonium acetate.

The reaction of ethyl cyanoacetate and salicylaldehyde or 3-methoxysalicylaldehyde with ketones was carried out by heating a mixture of ester, aldehyde, ketone, and ammonium acetate (molar ratio 1:1:1:1-1.5) in ethanol. In this case (Scheme 1), the dehydration of the amino group of I and the carbonyl group of ketone, cyclization between the methyl or methylene group of the ketone and the 4-position of the coumarin ring, and subsequent dehydrogenation took place to form 2- or 1,2-disubstituted-4-amino-5-oxo-6-oxabenz[f]isoquinolines (II).

When salicylaldehyde was heated with ethyl cyanoacetate and ammonium acetate in ethanol for few minutes, a crystalline product was obtained. Its infrared spectrum exhibited no characteristic

absorption for a C=N group. When dissolved in dilute hydrochloric acid, this substance afforded pale yellow needles. This compound was confirmed as the HCl salt of 3-amidinocoumarin (Ia) on the basis of elemental analysis and its infrared spectrum. Furthermore, when heated ketones and ammonium acetate in ethanol, crude Ia gave compounds of the types II and V. The cyclization reaction in the present study, therefore, can reasonably be explained in terms of a two-step condensation. Ethyl cyanoacetate and salicylaldehyde condensed to give 3-cyanocoumarin, which in turn converts readily to 3-amidinocoumarin. Then, 3-amidinocoumarin condenses with ketones to give heterocyclic compounds of the types II, IV, and V. When 3-methoxysalicylaldehyde was used instead of salicylaldehyde, the condensation afforded the corresponding methoxy derivatives. The structural assignment of these products was based on the infrared and NMR spectra (Tables 3 and 5). For example, the NMR spectrum of IIa (prepared when acetone was employed as the ketone reactant) showed only a methyl singlet at 2.8 ppm corresponding to three protons in a higher field than the aromaticring region. This fact indicated that one methyl group of acetone was involved in this cyclization. In the infrared spectra of II, carbonyl and amino stretching bands shifted to slightly lower frequencies because of the presence of intramolecular C=O···H₂N bonding. The structure of the type II was further supported by the fact that the compound obtained by the condensation of 3-amidinocoumarin (Ia) and methyl n-propyl ketone in the presence of ammonium acetate was found to be

¹⁾ A. Sakurai and H. Midorikawa, This Bulletin, ${\bf 40},~1680~(1967).$

A. Sakurai and H. Midorikawa, J. Org. Chem., 34, 3612 (1969).

Table 1. 4-Amino-5-oxo-6-oxabenz[f] isoquinoline derivatives and related compounds

	Z	2.44	11.81	0.94	11.03	0.57	0.44	15.0	90.0	0.00	2 2	8 -	0.47	9.86	9.52	9.28	9.12	8.97	1.75	0.91	0.05	10.26		9.44		11.91	00 8	8 20	9.29	4.66	4.83	4.55	4.39	1 20	0.10	69.6	9.15
Found, %	н		4.82		5.34									5.58								5.06		3.83		3.71						4.33					5.34
For	C	68.92	70.02											67.80								66.38		71.00		62.94						71.26				68.20	
	Z	12.38	11.66	11.02	11.02	10.44	10.44	10.44	9.92	6.92	8.28	10.93	10.37	9.85	9.39	9.39	8.97	8.97	11.66	11.02	9.92	10.37		9.21		12.28	8.86	8.09	9.29	4.68	4.84	4.39	4.39	=======================================	10.52	9.92	9.45
Calcd, %	H	4.46	5.03	5.55	5.55	6.01	6.01	6.01	6.43	6.43	7.74	4.72	5.22	2.67	80.9	80.9	6.45	6.45	5.03	5.55	6.43	5.22		3.98		3.51	5.10	5.24	4.67	5.73	3.83	4.10	4.10	4.80	5.30	5.00	5.44
0	ű	69.01	66.69	70.85	70.85	71.62	71.62	71.62	72.32	72.32	74.52	65.62	66.65	67.29	68.44	68.44	69.21	69.21	66.69	70.85	72.32	66.65		71.04		63.15	75.93	72.82	75.48	68.21	74.73	71.47	71.47	71,41	72.16	68.07	68.90
Formula		$C_{13}H_{10}O_2N_2$	$C_{14}H_{12}O_2N_2$	$C_{16}H_{14}O_2N_2$	$C_{15}H_{14}O_2N_2$	$C_{16}H_{16}O_2N_2$	$C_{16}H_{16}O_2N_2$	C,6H,6O,N,	C,H,O,N,	C,'H,'O,'N,	C,1H,6O,N,	C,'H,',O,'N,	ClrH,O,N,	$C_{16}H_{16}O_3N_2$	$C_{17}H_{18}O_3N_2$	$C_{17}H_{18}O_3N_2$	$C_{18}H_{20}O_3N_2$	C18H2003N2	$C_{14}H_{12}O_2N_2$	C15H14O2N2	$C_{17}H_{18}O_2N_2$	$C_{15}H_{14}O_3N_2$		$\mathrm{C_{18}H_{12}O_3N_2}$		$C_{18}H_{11}O_4N_3$	7/2 112 C24,4,60,N,	$C_{21}H_{18}O_3^{\dagger}N_2^{\dagger}$	$C_{19}H_{14}O_2N_2$	$C_{17}H_{17}O_4N$	$C_{18}H_{11}O_3N$	$C_{19}H_{13}O_4N$	$C_{19}H_{13}O_4N$	C, H, O, N,	$C_{16}H_{14}O_2^*N_2^*$	C16H14O3N2	$C_{17}H_{16}O_3N_2$
Yield. %	0/ (222	33	13											23		33	30	56	7	15	13	8		32		48	40	29			38		35	20	18	30	21
Mp, °C		241 - 242	171 - 173	173—174	145 - 147	147 - 148	118 - 120	155 - 156	143 - 145	149 - 151	103 - 105	233 - 234	186 - 189		182 - 184	195 - 197	174 - 176	- 1	218 - 220	-		225 - 228		300-302		263—266	169—171	-	-	T	1	303 - 304	299 - 301	249 - 251	- [- [239 - 241
R"		CH_3	C_2H_5	n-C ₃ H ₇	iso - C_3H_7	n -C $_4$ H $_9$	s-C4H,	iso - C_4H_9	$n ext{-} ext{C}_5 ext{H}_{11}$	$iso-C_5H_{11}$	$n ext{-}\mathrm{C_9H_{19}}$	CH_s	$\mathrm{C_2H_5}$	$n ext{-}\mathrm{C}_3\mathrm{H}_7$	n-C ₄ H ₉	$iso-C_4H_9$	$n ext{-}\mathrm{C}_{\mathbf{b}}\mathrm{H}_{11}$	iso -C $_{f b}H_{11}$	$_{ m CH_3}$	C_2H_b	$n ext{-}\mathrm{C}_4\mathrm{H}_{\mathfrak{g}}$	CH,	OH	0	NO_2	\Diamond	$-(\mathrm{CH_2})_2\mathrm{-Ph}$	$-(\mathrm{CH_2})_{\mathbf{z}}\mathrm{-Ph}$	Ph	iso-C ₄ H ₉	Ph	Ph i	-(0)-OCH3	Ì			
κ,		н	I;	I;	I;	I;	I :	Н	Н	Н	Н	Н	Н	Н	Ħ;	H	Η	Н	CH_3	CH3	CH,	CH_3		Н		Н	Н	Н	CH_3	H;	H	Н	Н	n=1	n=2	n=1	n=2
R		н:	I,	ı,	I;	Į;	Ξ:	H	Н	Н	Н	OCH	OCH	OCH,	OCH	OCH,	OCH,	$\stackrel{\mathrm{OCH}_3}{\stackrel{-}{_{1}}}$	н;	н:	Н	OCH_3		Н		Н	Н	OCH,	H	OCH,	H	ОСН3	Н	Н	Н	OCH,	OCH3
Compd.		IIa '	۵	ပော	p	မ မ	H	ხი,	ų ·			샠,		E	п	0	Ь	Ъ	ı	on ·		n		>		*	×	×	Z	IVa ,	q	ပ	p	Va	Р	۰,	q

Table 2. 4-Acetamino-5-oxo-6-oxabenz[f]isoquinoline derivatives and related compounds

						Calcd. %		Calcd. %		Ŧ	Found. %	
Compd.	×	Ά,	R''	$\mathrm{Mp},~^{\circ}\mathrm{C}$	Yield, %	Formula	ָ 	î 	$\binom{\mathbf{Z}}{\mathbf{Z}}$	ָּי (H	Z
IIIa	н	Н	CH,	253—255	64	C, H., O, N,	67.15	4.51	10.44	66 29	4 49	10.58
q	H	Н	$C_2H_{\mathfrak{g}}$	200 - 203	42	$C_{16}H_{14}O_3N_2$	68.07	5.00	9.92	68.39	4.76	10.03
၁	Н	Н	n - $\mathrm{C_3H_7}$	216-217	64	$C_{17}H_{16}O_3N_2$	68.90	5.44	9.45	69.14	5.32	9.70
p	Н	Н	$iso-C_3H_7$	191 - 193	69	$C_{17}H_{16}O_3N_2$	68.30	5.44	9.45	00.69	5.33	9.51
Ð	Н	Н	$n ext{-}\mathrm{C}_4\mathrm{H}_9$	207 - 209	87	$C_{18}H_{18}O_3N_2$	99.69	5.85	9.03	69.51	5.76	8.96
4	Н	Н	$s ext{-}\mathrm{C}_4\mathrm{H}_{f 9}$	187—188	09	$C_{18}H_{18}O_3N_2$	99.69	5.85	9.03	69 71	5 85	9.24
තර	Н	Н	$iso-C_4H_9$	224 - 226	87	$C_{18}H_{18}O_3N_2$	99.69	5.85	9.03	69.50	5.73	9.04
Ч	Н	Н	$iso-C_5H_{11}$	202 - 204	72	$C_{19}H_{20}O_3N_2$	70.35	6.22	8.64	66.69	5.99	8.44
	OCH_3	Н	CH_3	273—275	65	$C_{16}H_{14}O_4N_2$	64.42	4.73	9.39	64.59	4.89	9.43
.–,	OCH_3	Н	$n ext{-}\mathrm{C}_4\mathrm{H}_{f 9}$	235 - 237	73	$C_{19}H_{20}O_4N_2$	67.04	5.92	8.23	66.87	5.84	8.22
-74	OCH_3	Н	$n ext{-} ext{C}_5 ext{H}_{11}$	219-221	88	$C_{20}H_{22}O_4N_2$	67.78	6.26	7.91	67.52	6.03	7.97
_	OCH_3	Н	$iso-C_5H_{11}$	229 - 231	88	$C_{20}H_{22}O_4N_2$	67.78	6.26	7.91	67.53	6.11	8.02
Ħ	Н	$ m CH_3$	CH_3	210 - 213	64	$C_{16}H_{14}O_3N_2$	68.07	5.00	9.95	67.93	5.24	9.97
ជ	Н	$ m CH_3$	$C_2H_{f k}$	205 - 208	70	$C_{17}H_{16}O_3N_2$	68.30	5.44	9.45	68.78	5.42	9.59
0	Н	CH_3	$n ext{-}\mathrm{C}_4\mathrm{H}_{f 9}$	169 - 172	65	$C_{19}H_{20}O_3N_2$	70.35	6.22	8.64	70.45	6.30	8.72
			OAc 									
ď	Н	Н	\Diamond	231 - 233	29	$\mathrm{C_{22}H_{16}O_{6}N_{2}}$	68.03	4.15	7.21	67.79	3.97	7.19
			NO_2									
ď	Н	Н	(o)	305 - 307	95	$C_{20}H_{13}O_5N_3$	64.00	3.49	11.20	64.33	3.80	11.60
VIa	Н	n=1	Ì	229 - 232	74	C,"H.,O"N"	69.39	4.80	9.59	69.78	4 78	0 93
q	Н	n=2		241 - 242	65	$C_{18}H_{16}O_3N_2$	70.11	5.23	9.09	69.95	5.04	9.17
			The state of the s									

$$\begin{array}{c} CHO \\ CN \\ CH_2 \\ CO_2Et \end{array} \stackrel{CH_2}{\underset{R''}{C}} \xrightarrow{CH_3CO_2NH_4} \begin{array}{c} CH_3CO_2NH_4 \\ CO_2Et \\ R'' \end{array}$$

Scheme 1

identical with IIc by a comparison of their melting points and by infrared and elemental analyses.

The reaction of ethyl cyanoacetate and 3methoxysalicylaldehyde with methyl isobutyl ketone gave a mixture of 4-amino-2-isobutyl-7-methoxy-5-oxo-6-oxabenz [f] isoquinoline (IIo) as the main product, plus a small ammount of 2-isobutyl-7methoxy-5-oxo-6-oxabenz[f] - 1(2H) - isoquinolone (IVa). In the infrared spectrum of IVa, the carbonyl band (5-position) shifted to higher frequencies (1750 cm⁻¹) than that of IIo, and a new, strong band appeared at 1640 cm⁻¹. This band was characteristic of a pyridone- or quinolonetype carbonyl. When methyl ethyl ketone was employed as the ketone reactant, two products, melting at 173 and 218°C, were isolated. Their elemental analyses indicated the formula of C14-H₁₂O₂N₂. NMR spectrum of the former (mp 173°C) exhibited a triplet corresponding to three protons (CH₃) and a quartet corresponding to two protons (CH2). On the other hand, the latter (mp 218°C) showed only a singlet corresponding to six protons (CH₃). On the basis of these data, it seemed reasonable to assume the two structures of IIb and IIr for them, as is indicated below. The ratio of the formation of IIb to IIr was about 1:0.5, while that of III to IIu was about 1:1 (Scheme 2).

Reaction with ketones such as methyl nonyl ketone or methyl s-butyl ketone gave products, but in poor yields. However, methyl t-butyl, di-n-propyl, diisopropyl, or diisobutyl ketones gave no corresponding compounds of the type II.

Reaction with cyclic ketones (Scheme 3) pro-

$$(CH_2)_R - CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$NH_2$$

$$R$$

$$CH_3CO_3NH_4$$

$$R$$

$$NH_2$$

$$R$$

$$R$$

$$R$$

$$R$$

$$V$$

$$VI$$

Scheme 3

ceeded much as in the case of the reaction with the straight-chain ketones described above. In

Table 3. Infrared spectral data^{a)} for 4-amino-5-oxo-6-oxabenz [f] isoquinoline derivatives and related compounds

	$ m vNH_2$	vC=O	$\delta \mathrm{NH_2}$	Α	romatic ring		$\delta \mathrm{CH}$
IIa	3420, 3265, 3120	1700	1630	1610, 1600	, 1585, 1550)	755
IIb	3420, 3260, 3120	1700	1630	1610, 1600	, 1590, 1560)	765
IIc	3420, 3280, 3130	1700	1630	1610, 1600	, 1580, 1550)	765
IId	3420, 3280, 3150	1705	1630	1615, 1580	, 1550		760
IIe	3410, 3270, 3150	1705	1625	1610, 1600	, 1580, 1545	•	760
\mathbf{IIf}	3400, 3285, 3160	1710	1630	1615, 1600	, 1580, 1550)	770
\mathbf{IIg}	3400, 3260, 3130	1695	1630	1610, 1600	, 1585, 1550	1	765
IIh	3400, 3260, 3130	1700	1625	1610, 1600	, 1580, 1545	•	775
IIi	3410, 3270, 3140	1690	1630	1610, 1600	, 1580, 1550)	760
IIj	3410, 3270, 3140	1695	1630	1610, 1600	, 1585, 1550	1	760
IIk	3430, 3265, 3140	1705	1635	1625, 1590			790
III	3410 , 3270, 3150	1695	1630	1610, 1585	, 1550, 1495		785
IIm	3420, 3270, 3150	1690	1630	1615, 1585	, 1550, 1550	1	790
IIn	3410, 3280, 3150	1725	1635	1615, 1585	, 1555		780
IIo	3410, 3270, 3150	1695	1625	1615, 1580	, 1550, 1495		785, 780
IIp	3410, 3280, 3145	1700	1630	1610, 1580	, 1550		788
$_{ m IIq}$	3400, 3260, 3130	1700	1630	1615, 1590	, 1555		780
IIr	3500, 3380	1680		1610, 1595	, 15 8 5, 1535		765
IIs	3500, 3380	1680		1610, 1590	, 1580, 1555	, 1535	765
IIt	3400, 3260, 3120	1700	1620	1610, 1590	, 1550		765
Hu	3400, 3270, 3140	1685	1620	1605, 1580	, 1550		790
IIv	3430, 3300	1705	1630	1615, 1600	, 1585, 1550		760, 750
IIw	3440, 3360	1700		1610, 1600	, 1580, 1525	1530, 1350 (vNO ₂)	768, 755, 738
IIx	3410, 3270, 3150	1710	1630	1615, 1600	1585, 1555	, 1500	770, 760, 700
IIy	3410, 3280, 3150	1705	1630	1610, 1575		•	775, 750, 700
ΙΙż	3410, 3270, 3150	1710	1630		1550, 1540		765, 710
IVa	. ,	1760, 1655			1540, 1490		790
IVb		1760, 1640		1615, 1590	1540, 1510		755
IVc		1745, 1630		1610, 1590	1575, 1540.	1505	770, 725, 695
IVd		1740, 1625			1575, 1535,		825, 770
Va	3470, 3350	1675		, ,	1580, 1545		765 [°]
Vb	3420, 3260, 3130	1690	1620	1610, 1610.			765
Vc	3400, 3260, 3130	1695	1625	1615, 1565,			785
Vd	3430, 3260, 3130	1685	1620	1610, 1590,	1550		785

a) All spectra were taken in potassium bromide disks; cm⁻¹.

Table 4. Infrared spectral data^{a)} for 4-acetamino-5-oxo-6-oxabenz [f] isoquinoline derivatives and related compounds

	νNH	Ring C=O, NH-C=O	Aromatic ring	δ CH
IIIa	3240	1695, 1665	1610, 1595, 1560, 1525	770
IIIb	3260	1700, 1675	1610, 1595, 1555	780
IIIc	3250	1700, 1665	1615, 1595, 1555, 1520, 1500	775
$_{ m IIId}$	3250	1700, 1665	1615, 1590, 1550, 1520	770
IIIe	3250	1695, 1665	1615, 1595, 1555, 1520, 1500	775
IIIf	3250	1700, 1665	1615, 1595, 1550	765
IIIg	3250	1700, 1670	1615, 1595, 1550, 1515	775, 770
IIIh	3260	1700, 1670	1615, 1595, 1555, 1520	775
IIIi	3240	1700, 1670	1620, 1610, 1600, 1565	790
IIIj	3250	1700, 1670	1620, 1610, 1595, 1560, 1520	790
IIIk	3250	1695, 1665	1620, 1610, 1600, 1555, 1525	790
IIIm	3240	1675	1605, 1595, 1565, 1550, 1500	780
IIIn	3250	1675	1605, 1595, 1570, 1550, 1500	775
III_{0}	3240	1670	1605, 1595, 1570, 1550, 1500	775
$III_{\mathbf{p}}$		760, 1700, 1675 (O-Ac)	1610, 1595, 1550, 1520	770
IIIq	3240	1700, 1670	1610, 1595, 1530, 1520 1550, 1350 (NO ₂)	775
VIa	3230	1670	1605, 1595, 1570, 1550, 1500	765
\mathbf{VIb}	3240	1700, 1670	1590, 1570, 1550	770

a) All spectra were taken in potassium bromide disks; cm-1.

Table 5. NMR spectral data a_0 for 4-amino-5-oxo-6-oxabenz[f] isoquinoline derivatives and related compounds

	CH ₃	OCH3	CH_2	-\	Ring -CH=	NH
IIa	2.8(s, 3H)				7.5—8.5(m, 6H)	8.9-9.7(br, 1H)
IIb	1.55(t, 3H)		3.1(q, 2H)		7.5—8.7(m, 7H)	8.9—9.6(br, 1H)
Π_{c^b}	1.02(t, 3H)		2.7(t, 2H) 1.8(sx, 2H)		7.0(s, 1H), 7.15-7.5(m, 5H) 7.85-8.1(m, 1H)	,
(qPII	1.35(d, 6H)			2.5-3.3(sp, 1H)	7.0(s, 1H), 7.15–7.7(m, 5H) 7.85–8.1(m, 1H)	
IIe	1.1(t, 3H)		1.4—2.2(m, 4H) 3.1(t, 2H)		7.4-8.4(m, 5H)	8.8—9.7 (br, 1H)
IIf	1.13(t, 3H) 1.6(d, 3H)		1.95(qi, 2H)	3.1(sx, 1H)	7.4—8.4(m, 5H)	8.7—9.6(br, 1H) 11.65(br, 1H)
IIg	1.15(d, 6H)		2.9(d, 2H)	2.0-2.5(m, 1H)	7.4—8.4(m, 6H)	8.9—9.7(br, 1H)
Π_{b^b}	0.9(t, 3H)		1.2-2.0(m, 6H) 2.68(t, 2H)		6.9(s, 1H), 7.0—7.6(m, 5H) 7.75—8.0(m, 1H)	
IIk	2.8(s, 3H)	4.13(s, 3H)			7.5-8.0(m, 5H)	8.8—9.5(br, 1H)
III	1.55(t, 3H)	4.1(s, 3H)	3.08(q, 2H)		7.4—8.0(m, 5H)	
IIm	1.2(t, 3H)	4.1(s, 3H)	2.0(sx, 2H) 3.05(t, 2H)		7.3-8.1(m, 4H)	8.7—8.9(br, 1H)
IIo	1.15(d, 6H)	4.1(s, 3H)	2.9(d, 2H)	2.0-2.5(m, 1H)	7.4—8.1(m, 5H)	
IIr	2.8(s, 6H)				7.5–8.0(m, 4H)	8.5(br, 1H) 8.65(br, 1H)
IIs	1.55(t, 3H) 2.87(s, 3H)		3.17(q, 2H)		7.4-8.0(m, 3H), 8.55(d, 1H)	(111 (10) 0010
IIt	1.1(t, 3H) 2.85(s, 3H)		1.4—2.2(br, 4H) 2.7—3.35(br, 2H)		7.4-8.0(m, 3H), 8.55(d, 1H)	
IIu	2.8(s, 6H)	4.1(s, 3H)			7.4-7.7(d, 2H), 8.0-8.2(t, 1H)	
IIw					7.5-9.0(m, 9H)	9.3—9.9(br, 1H)
IIx			3.3(t, 4H)		7.2—8.2(m, 10H)	8.9—9.5(br, 1H)
IIy		4.12(s, 3H)	3.3(t, 4H)		7.1-7.8(m, 9H)	8.9—9.6(br, 1H)
IIz	2.8(s, 3H)				7.5-8.1, 8.5-8.8(m, 9H)	•
IVd		4.07(s, 3H)			7.2-8.6(m, 9H)	
Va			2.3-2.9(m, 2H) 3.1-3.9(m, 4H)		7.5—8.9(m, 5H)	10.9(s, 1H)
Vc		4.1(s, 3H)	2.3-2.8(m, 2H) 3.15-3.8(m, 4H)		7.5-7.7(d, 2H), 7.9-8.2(t, 1H)	
ρΛ		4.13(s, 3H)	1.8-2.3(br, 4H) 2.9-3.5(br, 4H)		7.53(d, 2H), 8.15(t, 1H)	

Parts per million downfield from tetramethylsilane in CF₃CO₂H; s=singlet, d=doublet, t=triplet, q=quartet, qi=quintet, sx=sextet, sp=septet, m=multiplet, br=broad. b) In CDCl₃ solution. a)

Table 6. NMR Spectral data a_0 for 4-acetamino-5-oxo-6-oxabenz[f] isoquinoline derivatives and related compound

HN	19 6(hr 1H)	12.55(br, 1H)	12.5(br. 1H)	12.55(br, 1H)	12.55(br, 1H)	12.6(br, 1H)	12.67(br, 1H)	12.75(br, 1H)
Ring -CH=	7.5—8.5(m. 5H)	7.5—8.5(m, 5H)	7.4—8.5(m. 5H)	7.5—8.5(m, 5H)	7.5–8.0(m, 3H)	7.5—8.6(m, 4H)	7.5—8.6(m, 9H)	7.2—8.1(m, 4H)
-HD-			3.5(sp, 1H)	3.3(sx, IH)				
CH ₂		2.05(sx, 2H)	3.23(t, 2H)	2.0(qi, 2H)		3.38(q, 2H)		2.3–2.9(m, 2H) 3.3–4.1(m, 4H)
OCH3					4.13(s, 3H)			
NH-CO-CH3	2.66(s, 3H)	2.67(s, 3H)	2.65(s, 3H)	2.68(s, 3H)	2.66(s, 3H)	2.67(s, 3H)	2.72(s, 3H) 2.45(O-CO-CH ₃ , s, 3H)	2.7(s, 3H)
CH3	2.98(s, 3H)	1.2(t, 3H)	1.6(d, 6H)	1.1(t, 3H) 1.6(d. 3H)	2.98(s, 3H)	1.65(t, 3H) 2.98(s, 3H)		
	IIIa	IIIc	IIId	IIIf	IIIi	IIIn	$_{ m dIII}$	VIa

Parts per million downfield from tetramethylsilane in CF₃CO₂H; s=singlet, d=doublet, t=triplet, q=quartet, qi=quintet, sx=sextet, sp=septet, m=multiplet, br=broad.

this case, cyclization occured between the methylene group adjacent to the carbonyl group of the ketone and the 4-position of the coumarin ring to form 5-amino-6-oxo-7-oxabenz[f]-2,3-dihydro-1H-cyclopent[c]isoquinoline (Va) (from cyclopentanone) and 6-amino-7-oxo-8-oxa-1,2,3,4tetrahydrobenzo[k]phenanthridine (Vb) cyclohexanone). These structures were supported by a study of the infrared and NMR spectra (Tables 3 and 5). In addition, a product obtained by the condensation of Ia and cyclohexanone was identified with Vb. Reaction with methyl aryl ketones (Scheme 1) gave 4-amino-2-aryl-5-oxo-6-oxabenz[f]isoquinolines (IIv-y). On the other hand, the use of acetophenone or p-methoxyacetophenone as the ketone reactant afforded 2-aryl-5-oxo-6-oxabenz[f]-1(2H)-isoquinolones (IVb-d) as the main product under the same reaction conditions. The infrared spectra of IVb-d have strong bands at about 1750 and 1640 cm⁻¹. The former band shifted to frequencies higher by from 50 to 60 cm⁻¹ than those of the compounds II. This fact shows the absence of intramolecular hydrogen bonding in the structure of the type IV, since the latter band (1640 cm⁻¹) can be attributed to the carbonyl group (4-position) of the quinolone type.

The reaction of ethyl cyanoacetate and salicylaldehyde with propiophenone gave 4-amino-1-methyl-5-oxo-2-phenyl-6-oxabenz[f]isoquinoline (IIz). The NMR spectrum revealed only a singlet corresponding to three protons (CH₃) in the high field. It is clear that the cyclization occurred between the methylene group of the ketone and the coumarin ring. The acetylation of the compounds of the types II and V, when treated with acetic anhydride in pyridine, afforded monoacetyl derivatives (III) and (VI) respectively (Table 2), while a diacetamino derivative was obtained from IIz under the same reaction conditions as produced those of the compounds III and VI.

Experimental

All the melting points are uncorrected. The infrared spectra were recorded on a Perkin-Elmer Model 521 grating spectrophotometer by means of potassium bromide pellets. The NMR spectra were obtained using a JNM-C-60 spectrometer; the peak positions are reported in δ values (parts per million downfield from tetramethylsilane).

Reaction of Ethyl Cyanoacetate and Salicylaldehyde. To a solution of ethyl cyanoacetate (4.52 g, 0.04 mol) and salicylaldehyde (4.88 g, 0.04 mol) in ethanol (5 ml), ammonium acetate (3.08 g, 0.04 mol) was added and heated for several minutes. The resulting crystals were filtered to give 4.8 g of crude 3-amidinocoumarin (Ia). When this crude Ia (3 g) was dissolved in dilute hydrochloric acid and allowed to stand at room temperature, pale yellow needles were formed. Recrystallization from ethanol afforded 1.5 g of 3-amidinocoumarin hydrochloride melting at 264—

266°C (dec); $\nu_{\text{max}}^{\text{KB}_{f}}$ 3390 (=NH), 3320, 3200 (NH₂), 1720 (C=O), 1670 (C=N), 1645 (δ NH₂), 1610, 1575, 1535 (ring); NMR {(CD₃)₂SO}, 7.4—8.0 (m, 4H, ring), 8.95 (s, 1H, ring), 9.6 ppm (br, 3H, NH₂ and =NH). Found: C, 53.35; H, 4.01; N, 12.56; Cl, 16.20%. Calcd for C₁₀H₈O₂N₂·HCl: C, 53.46; H, 4.01; N, 12.47; Cl, 15.80%.

Reaction of Ethyl Cyanoacetate and 3-Methoxysalicylaldehyde. To a solution of ethyl cyanoacetate (2.26 g, 0.02 mol) and 3-methoxysalicylaldehyde (3.04 g, 0.02 mol) dissolved in ethanol (7 ml), ammonium acetate (1.51 g, 0.02 mol) was added. After the reaction mixture had been heated for several minutes, 3.4 g of 8-methoxy-3-amidinocoumarin (Ib) were obtained. When this crude Ib (1 g) was dissolved in dilute hydrochloric acid and allowed to stand at room temperature, a pale yellow precipitate was formed. It was then recrystallized from ethanol to afford 0.7 g of 8-methoxy-3-amidinocoumarin hydrochloride; mp 250°C (dec.).

Found: C, 51.53; H, 4.54; N, 10.87; Cl, 13.62%. Calcd for $C_{11}H_{10}O_3N_2 \cdot HCl$: C, 51.89; H, 4.32; N, 11.00; Cl, 13.92%.

Reaction of 3-Amidinocoumarin (Ia) and Methyl n-Propyl Ketone. A mixture of Ia (2 g), methyl n-propyl ketone (1 g), and ammonium acetate (1 g) in ethanol (3 ml) was heated for 1 hr. After cooling, the resulting precipitate was collected and recrystallized from ethanol-glacial acetic acid to give 1.1 g of colorless needles, mp 173—174°C, this substance was found to be identical with IIc by the elemental analyses and by a study of the infrared spectral data.

Reaction of 3-Amidinocoumarin (Ia) and Cyclohexanone. A mixture of Ia (2g), cyclohexanone (1g), and ammonium acetate (1g) in ethanol (3 ml) was heated for 1 hr. A pale yellow crystalline matter precipitated out during the reaction; this was collected and recrystallized from glacial acetic acid to afford 0.8 g of pale yellow crystals, mp 225—227°C. This substance was proved to be identical with Vb by a study of their infrared spectra and by the results of elemental analyses.

Reaction of Ethyl Cyanoacetate and Salicylaldehyde or 3-Methoxysalicylaldehyde with Ketones. To a mixture of ethyl cyanoacetate (0.01 mol), salicylaldehyde or 3-methoxysalicylaldehyde (0.01 mol), and ketone (0.01 mol) in ethanol (3 ml), ammonium acetate (0.01-0.02 mol) was added, and the new mixture was refluxed for 0.5-2 hr. A crystalline compound precipitated out during the reaction or after the reaction mixture had been allowed to stand at room temperature. The experimental results and spectral data are summarized in Tables 1, 3, and 5. The molecular weight, as determined by means of high-resolution mass spectrometry, exhibited the following values: IIa, 226 (calcd for $C_{13}H_{10}O_2N_2$, 226.23), IIb, 240 (calcd for $C_{14}H_{12}O_2N_2$, 240.25), IId, 254 (calcd for $C_{15}H_{14}O_2N_2$, 254.27), IIr, 240 (calcd for $C_{14}H_{12}O_2N_2$, 240.25), IIs, 254 (calcd for $C_{15}H_{14}O_2N_2$, 254.27), Vb, 266 (calcd for $C_{16}H_{14}O_2N_2$, 266.29), IIv, 304 (calcd for $C_{18}H_{12}O_3N_2$, 304.29), IVb, 289 (calcd for $C_{18}H_{11}O_3N$, 289.28), IVd, 319 (calcd for C₁₉H₁₃O₄N, 319.3).

Acetylation of the Compounds II and V by Acetic Anhydride in Pyridine. To a solution of II or V (0.001 mol) dissolved in pyridine (2-4 ml), acetic anhydride (4-6 ml) was added, after which the

September, 1970] 2933

mixture was refluxed for 2—4 hr. After being cooled, the deposited precipitate was collected and washed with dilute methanol. The experimental results and spectral data are summarized in Tables 2, 4, and 6.

Acetylation of IIz. Acetic anhydride (7 ml) was added to a solution of IIz (0.5 g) dissolved in pyridine (4 ml), after which the mixture was refluxed for 4 hr. After cooling, ice water was added to the reaction mixture to afford a crystalline precipitate. The precipitate was collected, washed with cold dilute methanol, and dried. Recrystallization from glacial acetic acid gave 0.6 g of 4,4-diacetylamino-1-methyl-5-oxo-2-phenyl-6-oxabenz[f]isoquinoline, mp $205-207^{\circ}\text{C}$; $v_{\text{max}}^{\text{EBT}}$ 1740 (O-C=O), 1710, 1695 (CH₃-C=O), 1610, 1590, 1560, 1530 (hetero ring and phenyl), 775, 705

(δ CH); NMR (CF₃CO₂H) peaks at 2.35, 2.65 (s, 3H each, CO–CH₃), 3.0 (s, 3H, CH₃), 7.5—8.0 and 8.55—8.8 ppm (m, 9H, ring).

Found: C, 71.51; H, 4.75; N, 7.31%. Calcd for C₂₃H₁₈O₄N₂: C, 71.49; H, 4.70; N, 7.25%.

The authors wish to express their thanks to Dr. Taro Hayashi and Dr. Tatsuo Takeshima for their kind advice. Thanks are also due to Dr. Haruo Homma and his staff for their microanalyses, to Mr. Jun Uzawa for his measurements of the NMR spectra, and to Mr. Hironori Ogawa for his measurements of the infrared spectra.