PHOTOFRAGMENTATION OF OXAZOLIDINES.¹ A NEW METHOD FOR THE GENERATION OF AZIRIDINES

Otohiko TSUGE,* Kõji OE, and Noriyuki KAWAGUCHI

Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812

Irradiation of 4,5-cis-2,3,4,5-tetraaryloxazolidines and 3-aryl-3a,9b-dihydroacenaphth[1,2-d]oxazolidines generates the corresponding aziridine intermediates with elimination of aldehyde formed by fissions of the C_2-0 and C_4-C_5 bonds in the former and the C_2-0 and C_2-N bonds in the latter, respectively. The intervention of aziridine intermediates was proved by photo-cycloadditions.

Photofragmentations of appropriate heterocyclic compounds provide a valuable means of generating reactive species or strained small-ring compounds.² Concerning the photolysis with loss of carbonyl fragments from five-membered heterocyclic compounds, however, so far only the 1,2-dioxolanes³, 1,3dioxolanes⁴, and bicyclic isoxazolidines⁵ have appeared in the literature. Since the photo-decarbonylation of bicyclic isoxazolidines afforded the imine as shown below,⁵ we were interested in studying

photochemical behaviour of oxazolidines. In the present paper we wish to report the photofragmentation of oxazolidines leading to the generation of aziridine intermediates.

A solution of 1.13 g (3 x 10^{-3} mol) of 4,5-cis-2,3,4,5-tetraphenyloxazolidine $(\underline{1a})^6$ and 1.42 g (10^{-2} mol) of dimethyl acetylenedicarboxylate (DMAD) in 250 ml of benzene was irradiated, under nitrogen, with Pyrex-filtered light from a 300 W high-pressure mercury lamp below 20⁰C for 3 h. The reaction mixture was concentrated in vacuo at room temperature, and the residue was chromatographed on alumina using benzene as the eluent to give 3,4-bis(methoxycarbonyl)-2,5-trans-1,2,5-triphenyl-3pyrroline (2) and its dehydrogenated pyrrole $\underline{3}$ in 16 and 4% yields.⁷ Irradiation of a benzene solution of la and DMAD with a 15 W low-pressure mercury lamp below 20°C for 20 h afforded 2 and 3 in 14 and 8% yields, respectively.⁸ The spectral data of <u>2</u> were in agreement with those of the compound obtained from the thermal reaction of 2,3-cis-1,2,3-triphenylaziridine with DMAD.⁹

All other photochemical reactions in the present paper were performed by irradiation with a 300 W high-pressure mercury lamp below 20⁰C.

Upon irradiation of cis-4,5-bis(p-methoxypheny1)-2,3-diphenyloxazolidine (1b) in the presence of DMAD under similar conditions, 2,5-trans-2-(p-methoxyphenyl)-1,5-diphenyl-3-pyrroline ($\frac{4}{2}$) and its dehydrogenated pyrrole 5 were obtained in 16 and 4% yields. The same products, 4 and 5, were also formed in 9 and 1% yields from the photochemical reaction of 4,5-cis-2-(p-methoxyphenyl)-3,4,5-triphenyloxazolidine (1c) with DMAD. Structural elucidation of products, 2 - 5, was accomplished on the basis of spectral data.¹⁰

As described above, the same products, 4 and 5, were formed in both the photochemical reactions of 1b and 1c with DMAD. This fact indicates that p-methoxybenzaldehyde or benzaldehyde was photochemically extruded from \underline{b} or \underline{b} , respectively. Thus, the pathway for the photochemical reaction can be explained as illustrated in Scheme 1. The reaction proceeds via an initial formation of trans-

Scheme 1

aziridine intermediate <u>A</u> with elimination of aldehyde (Ar²CHO) from oxazolidine <u>1</u>. This is followed by disrotatory ring opening of <u>A</u> to trans-azomethine ylide <u>B</u>, which reacts with DMAD to give 2,5-trans-3-pyrroline <u>2</u> or <u>4</u>. This is comparable to the formation of 3-pyrroline <u>2</u> in the thermal reaction of 2,3-cis-1,2,3-triphenylaziridine with DMAD.⁹

Next, photofragmentations of 3-aryl-3a,9b-dihydroacenaphth[1,2-d]oxazolidines 6 have been investigated. The photochemical reactions of 3-phenyloxazolidine 6a and 2,3-diphenyloxazolidine 6b with DMAD afforded a 50% yield of the same bicyclic 3-pyrroline derivative 8, together with a small amount of unidentified product.¹¹ Similarly, irradiation of 3-(p-methoxyphenyl)oxazolidine 6c in the presence of DMAD gave the corresponding 3-pyrroline derivative 9 in 52% yield. The formation of 8 and 9 indicates that aldehyde (RCHO) was extruded from 6 to yield aziridine intermediate Z, which reacted with

DMAD to give 3-pyrroline g or g. In fact, the photochemical reaction of aziridine χ (Ar=Ph)⁹ with DMAD under similar conditions afforded g in 52% yield (Scheme 2). Structural elucidation of g and g

was accomplished on the basis of spectral data.¹²

In addition, the intervention of aziridine intermediate $\underline{7}$ was supported by the following evidence. Irradiation of oxazolidine <u>6a</u> alone in MeCN below 20^oC afforded a mixture of two products, <u>10</u> and <u>11</u>, whose relative yields depended on the irradiation time (Table 1). The product <u>10</u> was identical with an aziridine dimer (Ar=Ph) formed from thermal dimerization of aziridine $\underline{7}$ (Ar=Ph)⁹, and another product <u>11</u> which corresponded to an isomer of <u>6a</u> was assigned as <u>6</u>,8-oxazabicyclo[3.2.1]octane derivative on the basis of spectral data¹³ (Scheme 3). Irradiation of other oxazolidines, <u>6b</u>, <u>6d</u>, <u>6e</u> and <u>6f</u>,

3	
	3

was performed under similar conditions, and the results are also shown in Table 1. Oxazolidine 6d gave a mixture of dimer 12 and oxazabicyclooctane 13.¹⁴ In the cases of oxazolidines, 6b, 6e and 6f, having a substituent at 2-position, however, dimer 10 was obtained as the sole isolable product.

	Oxazolidin Ar	e R	Irradiation time, h	Product, %				Recovery of روچ %
<u>6a</u>	Ph	Н	1	10	39	11	12	19
<u>6a</u>	Ph	н	2	10	10	11	30	19
<u>6a</u>	Ph	н	3	10	5	11	45	—
<u>6</u> b	Ph	Ph	1	10	21			
<u>6d</u>	p-MeC ₆ H4	н	1	12	15	13	23	19
<u>6e</u>	Ph	Me	1	10	13			_
<u>6</u> f	Ph	Et	1	10	11		—	7

Table 1. Irradiation of Oxazolidines <u>6</u> in MeCN^a

^aIntractable materials were formed in all cases.

It has also been found that irradiation of oxazolidine $\underline{6f}$ in MeCN saturated with formaldehyde gave a 52% yield of oxazabicyclooctane $\underline{11}$. It is thus evident that dimer ($\underline{10}$ or $\underline{12}$) and oxazabicyclooctane ($\underline{11}$ or $\underline{13}$) are formed via dimerization of aziridine $\underline{7}$ and cycloaddition of $\underline{7}$ to formaldehyde, respectively (Scheme 3).

References

- Photochemistry of Heterocyclic Compounds. 10. Part 9: 0. Tsuge, K. Oe, and H. Inoue, Heterocycles, <u>12</u>, 217 (1979).
- N. J. Turro, "Modern Molecular Photochemistry", The Benjamin/Cummings Publishing Co., Inc., 1978, p. 526.
- 3. W. Adam and N. Duran, Tetrahedron Lett., 1357 (1972).
- 4. R. L. Smith, A. Manmade, and G. W. Griffin, ibid., 663 (1970).
- 5. N. A. LeBel, T. A. Lajiness, D. B. Ledlie, J. Am. Chem. Soc., <u>89</u>, 3076 (1967).
- Oxazolidines, <u>la</u>, <u>lb</u> and <u>lc</u>, were prepared from the corresponding triarylaminoethanols and benzaldehydes. <u>la</u>: mp 212-213^oC; <u>lb</u>: mp 161-163^oC; <u>lc</u>: mp 183-185^oC.
- A trace amount of 1,2-bis(methoxycarbonyl)cyclooctatetraene [mp 110-112⁰C] was obtained, together with recovery (18%) of <u>la</u>.
- 8. The cyclooctatetraene compound was obtained in 20% yield, together with recovery (15%) of <u>la</u>.
- 9. A. C. Oehlshlager, A. S. Yim, and M. H. Akhtar, Can. J. Chem., <u>56</u>, 273 (1978).
- 10. All new compounds in this paper gave satisfactory elemental analyses. IR and NMR spectra were taken in KBr disks and in CDCl3 solutions, respectively.
 2: mp 172-173°C (1it.⁹ mp 164-166°C); IR 1735 (sh), 1725 cm⁻¹; NMR δ 3.60 (6H, s), 6.25 (2H, s, \$CH), 6.30-7.50 (15H, m); MS m/e 413 (M⁺). 3: mp 210-212°C; IR 1710 (sh), 1700 cm⁻¹; NMR δ 3.70 (6H, s), 6.70-7.30 (15H, m); MS m/e 411 (M⁺). 4: mp 167-168°C; IR 1750, 1730 cm⁻¹; NMR δ 3.59, 3.60, 3.67 (each 3H, s), 6.26 (2H, s, \$CH), 6.40-7.40 (14H, m). 5: mp 166-167°C; IR 1720, 1710 cm⁻¹; NMR δ 3.73 (3H, s), 3.75 (6H, s), 6.70-7.30 (14H, m).
- 11. Oxazolidines <u>6</u> were prepared by the reported method (0. Tsuge, M. Tashiro, and K. Oe, The Reports of Research Institute of Industrial Science, Kyushu University, No. 51, 7 (1971)). The unidentified product, mp 187-189^oC, was an isomer of <u>8</u>. IR 1730, 1710 cm⁻¹; NMR δ 3.70, 3.81 (each 3H, s), 6.70-7.90 (11H, m), 8.00, 8.65 (each 1H, s); MS m/e 385 (M⁺).
- 12. <u>8</u>: mp 229-230^oC (lit.⁹ mp 211-212.5^oC); IR 1735 (sh), 1720 cm⁻¹; NMR & 3.76 (6H, s), 5.79 (2H, s, ≥CH), 6.50-7.70 (11H, m); MS m/e 385 (M⁺). <u>9</u>: mp 225-227^oC (lit.⁹ mp 225-227^oC); IR 1740, 1715 cm⁻¹; NMR & 3.50 (3H, s), 3.70 (6H, s), 5.66 (2H, s, ≥CH), 6.40-7.60 (10H, m).
- 13. <u>10</u>: mp > 300^oC (lit.⁹ mp 322-324^oC); NMR δ 5.12 (4H, s, \geq C<u>H</u>), 6.40-7.70 (22H, m); MS m/e 243 (M⁺/2). <u>11</u>: mp 132-133^oC; NMR δ 3.93 (1H, d, H_b, J=6.0 Hz), 4.28 (1H, dd, H_a, J=5.0, 6.0 Hz), 5.18 (1H, d, H_c, J=5.0 Hz), 6.43 (1H, s, H_d), 6.70-7.90 (11H, m); MS m/e 273 (M⁺).
- 14: 12; mp > 300^oC; NMR δ 1.96 (6H, s), 5.03 (4H, s, ≽C<u>H</u>), 6.20-7.80 (20H, m); MS m/e 257 (M⁺/2). 13: mp 136-137^oC; NMR δ 2.23 (3H, s), 3.92 (1H, d, H_b, J=6.0 Hz), 4.27 (1H, dd, H_a, J=4.5, 6.0 Hz), 5.13 (1H, d, H_c, J=4.5 Hz), 6.41 (1H, s, H_d), 6.90-7.90 (10H, m); MS m/e 287 (M⁺).

(Received September 4, 1981)