This article was downloaded by: [Monash University Library]

On: 05 December 2014, At: 07:07

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Ortholithiation As a Tool for the Synthesis of Ebselen Analogues

Christian Lambert ^a , Marc Hilbert ^a , Léon Christiaens ^a & Norbert Dereu ^b

^a Heterocyclic Chemistry, Chemistry Institute, B.6. Sart-Tilman, 4000, Liege, (Belgium)

^b Nattermann Gmbh, Nattermannallee , 1 5000, KÖ, 30, (F.R.G.)

Published online: 24 Sep 2006.

To cite this article: Christian Lambert , Marc Hilbert , Léon Christiaens & Norbert Dereu (1991) Ortholithiation As a Tool for the Synthesis of Ebselen Analogues, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 21:1, 85-98, DOI: 10.1080/00397919108020794

To link to this article: http://dx.doi.org/10.1080/00397919108020794

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

ORTHOLITHIATION AS A TOOL FOR THE SYNTHESIS OF EBSELEN ANALOGUES

Christian Lambert, Marc Hilbert and Léon Christiaens

Heterocyclic Chemistry, Chemistry Institute B.6.

Sart-Tilman, 4000 LIEGE (Belgium)

Norbert Dereu

Nattermann Gmbh, Nattermannallee, 1
5000 KÖLN 30 (F.R.G.)

<u>Abstract</u>: Ortholithiation reactions are shown to be effective tools for the synthesis of Ebselen (N-phenyl-benzisoselenazolin-3-one) derivatives.

The recent work of ENGMAN L. 1 on "Ebselen expedient synthesis" prompts us to disclose the results of our work in this field since they have now been patented. It is well established, especially in our laboratory, that N-substituted benzamides undergo ortholithiation reactions 2 allowing chalcogen introduction 1,3 . We have examined extensions of this reaction to several substituted arylamides, which are possible precursors of Ebselen analogues.

^{*} to whom correspondence should be addressed

86 LAMBERT ET AL.

Ortholithiations

When treated with n-BuLi substituted benzamides afford dilithiospecies $\underline{1A}$ which can be quenched with dimethyldiselenide or elemental selenium, leading to selenides $\underline{2A}$ or diselenides $\underline{3A}$ respectively. The yields are usually about sixty percent except for R_{\uparrow} = - $^{\text{CH}}_3$ (see table 1). The reaction also works with isonicotinanilide 4 giving 2Cc in good yield.

The isomeric amide $\underline{2Bc}$ has been obtained by amidation of the 2-(methylseleno)nicotinic acid or by an alternative pathway: the nucle-ophilic substitution of the chlorine atom in 2-chloro-nicotinanilide with methaneselenolate anion. After protection of the 5-position in furan-2-carboxylic acid 6 , it has been possible to metallate $\underline{5d}$ in the 3-position with L.D.A. and thus to introduce the methylseleno moiety to obtain 6d.

Thiophene-2-carboxamides can be lithiated at the 3-position 7 affording the chalcogenated product 7e on quenching with dimethyldiselenide. The isomeric compound 8 has been obtained by reacting thiophene-3 carboxylic acid successively with L.D.A. 8 and dimethyldiselenide, followed, as for 6d, by aminolysis of the corresponding acid chloride. We have also obtained more sophisticated species (9 and 10) through metallation of 2-phenyl-2-imidazoline 9 and 2-phenylbenzimidazole 10 . However, we never succeeded in either introducing the -SeCH $_3$ moiety into 2-phenylimidazole via lithiation or in aromatizing 9. Finally, all our attempts at transforming the dilithiated species directly into heterocycles with a chalcogen bis-electrophile failed. With selenium dibromide we obtained the corresponding monoselenide, even after reverse addition, and with selenium tetrabromide or disulfur dibromide, we were unable to isolate any identifiable reaction product.

Ring closures

Cyclisation of selenides $\underline{2}$ or diselenides $\underline{3}$ is usually realised through an intermediate selenenyl halide 11 obtained from $\underline{2}$ or $\underline{3}$ by reaction with thionylchloride, sulfurylchloride or bromine. The ring closure is then accomplished by treatment with a base (sodium hydrogenocarbonate, sodium carbonate, triethylamine or

pyridine). Unfortunately, the results strongly depend on both the group R and the aromatic ring. In the benzene series, all the anilides $(R_1 = -C_6H_5)$ readily cyclise to Ebselen derivatives with yields around 50 percents while the N-methylbenzamides yielded very small quantities of the corresponding 4a.

A : X1=X2=CH $B: X_1=N, X_2=CH$

 $C : X_1 = CH, X_2 = N$

 $d: R_4 = -Si(CH_3)_3 Y=0$

a: R1=-CH3 c : R1=-C6H5

e : R4=-H

b: R1=-tert-C4H9

$$R_4$$
 COOH R_4 COOH R_4 CONHC_eH₅ R_4 R_4

9 10 ₿

88 LAMBERT ET AL.

With N-tert-butyl derivatives we sometimes observed formation of a nitrile product of the VON BRAUN reaction. Only two derivatives of the pyridine series 2Bb and 2Bc have been cyclised. The isomeric compounds undergo a bromodeselenisation reaction on the pyridine ring with bromine. No cyclic compound was obtained in the furan and thiophene series. Finally none of our experiments on $\underline{9}$ or $\underline{10}$ have afforded the required tricyclic compound.

Experimental

Melting points are uncorrected. I R spectra were recorded on a Beckman IR 20 (1 % in weight in KBr pellets). NMR spectra were taken on a Varian EM 360 L or a Bruker WP 200 SY in CDCl_3 or d $_6$ - DMSO solution (δ $^{77}\mathrm{Se}$ are given with respect to dimethylselenide as internal standard). Mass spectra were obtained with a Varian MAT 112 or a Finnigan MAT 311 A at 70 eV 12 . Analytical data, determined on a Hewlett-Packard 185B are correct within the accepted limits of experimental error.

I- Ortholithiation procedure

To a solution of the substrate (10^{-2} mole) to be metallated in anhydrous THF (100 ml); was added a solution of the corresponding base (2 10^{-2} mole) at - 78° C. After stirring for 2 h. at room temperature (RT) the mixture is quenched with 10^{-2} mole (1.9 g, 1.2 ml) of dimethyldiselenide and stirred for a further hour at RT. The usual work-up generally afforded a solid which was recrystallized from toluene. When elemental selenium was used as electrophile, the mixture was saturated with oxygen for 2 h. before the work-up and the resulting diselenides were recrystallized from toluene-ethanol.

II. Synthesis of amides from methylseleno-acids

The acid (10^{-2} mole) was left overnight with an excess of dichloromethyl methylether (10 ml) in the presence of anhydrous ZnCl_2 (100 mg). The reagent is then removed in vacuo and to the residue, dissolved in 100 ml of CH_2Cl_2 , is added 3 10^{-2} mole of amine. After stirring for 2 h. at RT and standard work-up, the residue was recrystallized from toluene (table 1).

Downloaded by [Monash University Library] at 07:07 05 December 2014

table 1 : acyclic precursors

			!	
$v_{C=0} (cm^{-1})$ ¹ H RMN (ppm)	6,72-7,34 (m,3H, ArII + NH) 2,83 (d, J=5Hz,3H,NH-CH ₃ 2,16 (s, J _{SeCH₃} =13Hz, 3H, SeCH ₃) 2,1 (s, 3H,CH ₃)	6,82-7,28 (m,3H, ArH) 5,83 (s, broad, 1H,NH) 2,22 (s, J _{SeCH} = 14Hz, 3H, SeCH ₃) 2,16 (s, 3H, CH ₃) 1,4 (s, 9H, t-C ₄ H ₉)	7,88 (s, broad , 111, NH) 6,64-7,8 (m, 8H, ArH) 2,26 (s, J _{SeCH} =13Hz, 3H, SeCH ₃) 2,06 (s, 3H, CH ₃)	8 (s, broad, 1H, NH) 6,7-7,5 (m, 3H, ArH) 3,8 (s, 3H, OCH ₃) 2,47 (d, J=10Hz, 3H, CH ₃)
VC=0 (cm ⁻¹)	1640	1630	1640	1640
(Jo) dW	162–165	102-105	128-130	201-205
Yields %	2	65	73	3,1
R3	=	I	=	Ξ
R2	-5-CH ₃	-5-CH3	-5-CH ₃	-3-0CH ₃
Compounds	2Aa	2Ab	2Ac	ЗАа

Downloaded by [Monash University Library] at 07:07 05 December 2014

Table 1 (continued)

SAb	- 5-00113	=	(9	221-227	1630	6,7-7,3 (m, 3H, ArH) 6,23 (s, broad, 1H, NH) 5,16 (s, 3H, OCH ₃) 1,3 (s, 9H, t-But)
SAC	-3-00113	-3-0CH ₃ -4-0CH ₃ 41	4	2.55	1640	9,9 (s, 1H, NH) 6,7-7,53 (m, 7H, AtH) 3,64 (s, 3H, OCH ₃) 3,47 (s, 3H, OCH ₃)
2Ac	-3-0CH ₃		20	115-120	1640	8,36 (s, 1H, NH) 6,9-7,9 (m, 8H, ArH) 4,13 (s, 3H, OCH ₃) 2,13 (s, ³ SeCH ₃ =12Hz, 3H, SeCH ₃)
2 A a	-301		48	122-124	1630	7,4 (m, 1H, ArH) 7,2 (m, 2H, ArH) 6,65 (s, broad, 1H, NH) 2,97 (d, J=5Hz, 3H, CH ₃) 2,32 (s, J _{SeCH₃} =20Hz, 3H, SeCH ₃)

7,4 (dd, $J_{\rm A}$ =7Hz, $J_{\rm B}$ not meas., 1H, ArH) 7,2-7,32 (m, 2H, ArH) 5,66 (s, 1H, NH) 2,16 (s, $J_{\rm SeCH}$ =14Hz, 3H, SeCH ₃) 1,36 (s, 9H, t= 2 C ₄ H ₉)	7,81 (s, 1H, NH) 6,9-7,47 (m, 8H, ArH) 2,17 (s, ^J SeCH ₃ = 12Hz, 3H, SeCH ₃)	8,62 (s, 1H, H ₂) 8,47 (d, $J_{H_5-H_6} = 5Hz$, 1H, H ₆) 7,32 (d, $J_{H_5-H_6} = 5Hz$, 1H, H ₅) 6,27 (s, broad, 1H, NH) 2,35 (s, $J_{SeCH_7} = 13Hz$, 3H, SeCH ₃) 1,45 (s, 9H, $t^2C_4H_9$)	9,07 (s, broad, 1H, NH) 8,4 (d, 3=5Hz, 1H, H _b) 8,37 (s, 1H, H ₂) 8,17 (d, 3=5Hz, 1H, H _b) 7,04-7,61 (m, 5H, C ₆ H ₅) 2,25 (s, 3_{SeCH_3} =13Hz, 3H, SeCH ₃)
1640	1680	1660	1650
109-111	167-170	98-100	110-112
69	81	75	80
Ξ	π	Ξ	Ι
-361	-301	Ι	Ξ
2Ab	2Ac	2Cb	2Cc

Downloaded by [Monash University Library] at 07:07 05 December 2014

Table 1 (continued)

28b 13	z z	Ξ	87	149-150	1640	8,5 (dd, $^{1}_{J_{5}}H_{5}^{-1}H_{$
2Bc 13	=	Ξ.	75	180-182	1650	8,65 (dd, $^{1}H_{5}^{-1}H_{6}^{-1}=5Hz$; $^{1}H_{4}^{-1}H_{6}^{-1}$ not meas.,1H, $^{1}H_{6}^{-1}$ 8 (dd, $^{1}H_{4}^{-1}H_{5}^{-1}=8Hz$; $^{1}H_{4}^{-1}H_{6}^{-1}$ not meas., 1H, $^{1}H_{4}^{-1}$ 7,6 (dd, $^{1}H_{4}^{-1}H_{5}^{-1}=8Hz$; $^{1}H_{5}^{-1}H_{5}^{-1}=5Hz$, 1H, $^{1}H_{5}^{-1}$ 6,8-7,4 (m, 5H, H lateral arom. ring) 6,5 (s, broad, 1H, NH) 2,15 (s, $^{1}J_{5}ecH_{3}^{-1}=15Hz$, 3H, $^{1}SeCH_{3}^{-1}$
6d 13		 	50	165-167	1670	(solvent : CO_30D) $6,56$ (s, 1H, H_4) $2,23$ (s, $J_{SeCH_3} = 15Hz$, 3H, $SeCH_3$) $0,26$ (s, 9H, $Si(CH_3)_3$) C00H : not observed

6,76-7,33 (m, 7H, H_{4} + NH, $C_{6}H_{5}$) 2,2 (s, $J_{SeCH_{3}}$ =15Hz), 3H, $SeCH_{3}$) 0,25 (s, 9H, $Si(CH_{3})_{3}$)	7,77 (d, J=5Hz, 1H, H ₅) 7,5 (s, broad, 1H, NH) 7,12 (d, J=5Hz, 1H, H ₄) 2,3 (s, J _{SeCH₃} =14Hz, 3H, SeCH ₃) 1,36 (s, 9H, ⁷ t-C ₄ H ₉)	9,98 (s, broad, 1H, NH) 7,75 (d, J=5Hz, 1H, H ₅) 7,65 (d, J=8Hz, 2H, ArH) 7,32 (dd, J _A =J _B =8Hz, 2H, ArH) 7,15 (d, J=5Hz, 1H, H ₄) 7,1 (t, J=8Hz, 1H, ArH)
1670	1620	1630
120-122	64	108-110
40	47	40
t.	,	ı
ļ	ı	ı
7d 13	7 e but -C ₆ H ₅ = tert -C ₄ H ₉	7е

Downloaded by [Monash University Library] at 07:07 05 December 2014

Table 1 (continued)

acide $\frac{14}{5}$ = $\frac{7,82}{68}$ (d, 7,75 (d, 7,75 (d, 7,12 (l. 2,35 (d, 7,12 (l. 1,12))) = $\frac{14}{5}$ = $\frac{1}{5}$ = $\frac{1}$ = $\frac{1}{5}$ = $\frac{1}{5}$ = $\frac{1}{5}$ = $\frac{1}{5}$ = $\frac{1}{5}$ =	8 13	ı	ı	20	153-155	1630	9,9 (s, broad, 111, NH)
- 42 153-159 1670 - 47 84-89 - - 43 240-245 -							7,82 (d, J=5Hz, 1H, H ₅
- 42 153-159 1670 - 47 84-89 47 840-245 43 240-245							7,75 (d, J=5H2, 1H, H ₄)
- 42 153-159 1670 - 47 84-89 - - 43 240-245 -						-	7,68 (d, J=7Hz, 2H, H arom.)
- 42 153-159 1670 - 47 84-89 47 240-245							7,35 (dd, J _A =J _B =7Hz, 2H, ArH)
- 42 153-159 1670 - 47 84-89 - - 47 84-89 -						-	7,12 (t. J=7Hz, 1H, ArH)
- 42 153-159 1670 - 47 84-89 - - 43 240-245 -							2,35 (s, ^J SeCH ₃ =15Hz, 3H, SeCH ₃)
- 47 84-89 - - 43 240-245 -	acide 14	1 1	 	42	153-159	1670	12,85 (s, broad , 1H, CO ₂ H)
- 47 84-89 - - 43 240-245 -	3				_	_	7,55 (d, J=5Hz, 111, H ₅)
47 84-89 43 240-245	, 					•	7,35 (d, $J=5Hz$, 1H, H_{Δ})
- 47 84-89 - - 43 240-245 -	15 3. C.	•					2,37 (s, J _{SeCH₃} =13Hz, 3H, SeCH ₃)
- 47 84-89 - - 43 240-245 -	-	1		1		1	
- 43 240-245	6	ı	1	47	84-89	1	7,16-7,56 (m, 4H,ArH)
- 43 240-245							4,75 (s, broad, 1H, NH)
- 43 240-245							3,8 (s, broad, 4H, 2CH ₂)
- 43 240-245 -							2,25 (s, J _{SeCH} ,=13Hz, 3H, SeCH ₃)
- 43 240-245 -		1	1	1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7,2-7,92	10 15	ı	ı	43	240-245	ı	12,9 (s, broad, 1H, NH)
						-	7,2-7,92 (m, 8H, ArH)
2,17 (s)							2,17 (s, J _{SeCH} ,=15Hz, 3H, SeCH ₃)

Downloaded by [Monash University Library] at 07:07 05 December 2014

table 2

77 _{Se} RMN ¹ H RMN (ppm)	7,97 (d, J=7Hz, 1H, H ₇) 7,75 (s, 1H, H ₄) 7,65 (d, J=7Hz, 2H, H lat.arom.cycle) 7,5 (d, J=7Hz, 1H, H ₆) 7,57-7,55 (m, 2H, H lat. arom. cycle) 7,27 (t,J=7Hz, 1H, H lat. arom. cycle) 2,42 (s, 3H, CH ₂)	7,8-6,76 (m, 7H, ArH) 3,81 (s, 6H, OCH ₃)	963 7,76-6,83 (m, 8H, ArH) 3,86 (s, 3H, OCH ₃)	967 7,78 (dd, J _A =3Hz; J _B =2Hz, 1H, ArH) 7-7,45 (m, 7H, ArH)
1 1	1630	1660	1640	1670
Cyclis. Yield Mp (°C) VC=0_1	175-180	139-141	139-140	101-103
Yield	12	73	99	95
Cyclis. method	<u> </u>	В	8	В
R ₃	Ι	-6-0CH ₃ -7-0CH ₃	-7-0CH ₃ B	-7C1
R ₂	-5-CH ₃	-6-0СН3	 	I
Compounds	4Ac	4Ac	4AC	4AC

Downloaded by [Monash University Library] at 07:07 05 December 2014

Table 2 (continued)

8,75 (dd, J _H ₅ -H ₆ =5Hz; J _H ₄ -H ₆ meas., 1H, H ₆) 8,2 (dd, J _H -H ₅ =8Hz; J _H -H ₆ meas., 1H, H ₄) 7,37 (dd, J _H -H ₅ =8Hz; J _H -H ₆ 11,67 (s, 9H, t-C ₄ H ₉)	8,8 (dd, J _H -H ₅)6 1H, H ₆)6 8,33 (dd, J _H -H ₅ =8Hz; J _H ₄ -H ₆ 1H, H ₄)7 7,1-7,76 (m, 6H, H ₅ + C ₆ H ₅)
1630	1640
45 173-175 1630	74 209-211
4 5	74
ď	Ą
Ξ	Ξ
Ξ	Ι
4Bb	4Bc

III. Cyclisation procedure

A) Br₂-pyridine

To a solution of the amide (10^{-2} mole) in CH_2Cl_2 (200 ml) was added dropwise a solution of bromine (1.6 g, 0.51 ml, 10^{-2} mole) in CH_2Cl_2 (20 ml). The resulting solution was stirred for 1 h. at RT and 10 ml of dry pyridine was added. The reaction mixture was hydrolysed after 1 h. with 200 ml of 2 M HCl. After usual work-up, the residue is recrystallized from toluene. (table 2)

B) $SOC1_2 - NaHCO_3$

A mixture of 10^{-2} mole of amide and 50 ml of SOCl_2 was refluxed for 4 h. The excess of reagent was removed under reduced pressure and the residue was taken up in 200 ml of $\mathrm{CH}_2\mathrm{Cl}_2$. 2 10^{-2} mole of NaHCO_3 was added and the mixture stirred overnight. Hydrolysis by 100 ml of HCl 1M afforded after the usual work-up a residue which was recrystallized from toluene.

(table 2)

Acknowledgement

We gratefully thank Professor M. RENSON for the interest he took in this work, and the "Metallurgie Hoboken Overpelt" (MHO-BELGIUM) for a generous gift of selenium.

C.L. is indebted to NATTERMANN (KOLN) for financial support towards the realisation of his Ph. D.

References

- 1. ENGMAN, L. and HALLBERG, A., J. Org. Chem., 1989, 54, 2964
- 2. GSCHWEND, H.W. and RODRIGUEZ, H.R., Org. React. (N.Y.), 1979,26,1
- CHRISTIAENS, L. , LUXEN, A., EVERS, M., THIBAUT, Ph. and MBUYI, M.
 Chem. Scr., 1984, 24, 178
- EPSZTAJN, J., BIENIEK, A. and PLOTKA, M., J. Chem. Res., (M), 1986,
 442
- 5. PIRSON, P. and CHRISTIAENS, L., Bull. Soc. Chim. Fr., 1973, 704
- CARPENTER, A. and CHADWICK, D., Tetrahedron Lett., 1985, 1777

98 LAMBERT ET AL.

7. CARPENTER, A. and CHADWICK, D., J. Org. Chem., 1985, 50, 4362

- 8. KNIGHT, D. and NOTT, A., J. Chem. Soc., Perkin Trans. 1, 1983, 791
- 9. HOULIHAN, W. and PANINO, V., J. Org. Chem., 1982, 47, 5177
- 10. RANADE, A.C. and GOPAL, J., Chem. Ind. (London), 1978, 582
- 11. RENSON, M., "Selenium and Tellurium Heterocycles" in "The Chemistry of Organic Selenium and Tellurium Compounds", vol. 1, PATAI, S. and RAPPOPORT, Z., (John WILEY and Sons ed.)
- 12. All new compounds give correct mass spectra in agreement with natural abundance of isotopes present in the molecule.
- 13. See experimental II
- 14. LDA was used as the base to obtain 2-methylseleno-3-thiophene carboxylic acid.
- 15. 3 equiv. of tert-Buli were used.

(Received in The Netherlands 6 November, 1990)