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Werecently described the synthesis and characterization of a
series of icosahedral carboranes with fluorinated aryl

C substituents,1 deliberately targeted as potential precursors
for supraicosahedral (hetero)carboranes. Of these the most
promising compound, on the basis of a combination of NMR
spectroscopic, computational, and electrochemical data, was
1,2-(40-F3CC6F4)2-1,2-closo-C2B10H10 (I). We now report that
reduction and subsequent metalation of I with {CpCo} and
{Cp*Co} fragments affords 4,1,12-CoC2B10 supraicosahedral
products which are the result of unprecedented room tempera-
ture (or below) isomerization. The {Cp*Co} reaction addition-
ally results in a monocarbon metallacarborane which is the result
of a unique decarbonation reaction.

Reaction of a THF solution of I, previously reduced with 2
equiv of sodium naphthalenide, with Na[C5H5] and CoCl2, fol-
lowed by aerial oxidation, affords the orange cobaltacarborane 1
as the only isolable product.2 Compound 1 was initially char-
acterized bymicroanalysis,mass spectrometry, and 1H, 11B and 19F
NMR spectroscopy. Conventionally, reduction and subse-
quent metalation of 1,2-closo-C2B10 species affords 4,1,6-MC2B10
docosahedral products3 which are asymmetric in the solid state4

butCs symmetric in solutionvia adoublediamond�square�diamond
(DSD) fluxional process that is well understood.3,5 However,
spectroscopic analysis of 1 clearly suggested that it is asymmetric
in solution. Thus, in the 11B{1H} NMR spectrum in acetone-d6
are eight resonances with the relative integrals 2:1:1:1:1:1:1:2
(from high frequency to low frequency) and the 13C spectrum
includes two Ccage resonances at 67.0 and 69.0 ppm. Although
initial inspection of the 19F spectrum suggests only one unique
40-F3CC6F4 substituent, expansion of the multiplet (due to the
CF3 group) centered on �57.3 ppm clearly shows it to be two

overlapping triplets. An X-ray diffraction study6 ultimately re-
vealed 1 to be the 4,1,12-MC2B10 isomer 1,12-(40-F3CC6F4)2-4-
Cp-4,1,12-closo-CoC2B10H10 (Figure 1). It is well established
that 4,1,12-MC2B10 metallacarboranes can be prepared from
either 4,1,6-3,7 or 4,1,10-analogues8 by thermolysis (the former
proceeding via the 4,1,8-isomer), but the direct formation of a
4,1,12-MC2B10 isomer from an o-carborane derivative at only
room temperature is unprecedented. We suggest that the initial
product of reduction and metalation of I is, indeed, a 4,1,6-
MC2B10 species but that this spontaneously isomerizes to the
thermodynamically preferred 4,1,12-isomer. Although the pre-
cise mechanism by which 4,1,6-MC2B10 sequentially isomerizes
to 4,1,8- and 4,1,12-forms has not been determined, there is no
reason to believe that the same process does not happen here, in
which case the barriers to isomerization must be considerably
reduced due to either steric or electronic (or both) influences of
the fluorinated aryl substituents.9

When I is stoichiometrically reduced (2e) and treated with
Na[C5Me5] and CoCl2, three compounds are isolated following
workup.11 The major product (24%), 2, was ultimately shown
simply to be the modified carborane 1,2-(40-F2{C5Me5}-
CC6F4)2-1,2-closo-C2B10H10,

12 but minor products 3 (6%) and
4 (8%) are cobaltacarboranes.

Compound 3 was characterized spectroscopically. Although
single crystals of suitable quality for a diffraction study could not
be obtained, we confidently identify 3 as 1,12-(40-F3CC6F4)2-4-
Cp*-4,1,12-closo-CoC2B10H10, the simple Cp* analogue of 1.
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ABSTRACT: Reduction and metalation of 1,2-(40-F3CC6F4)2-1,2-closo-C2B10H10

affords 4,1,12-MC2B10 compounds directly at room temperature with no evidence of
intermediate 4,1,6- or 4,1,8-analogues. ForM =CpCo this species is the only isolable
product. The M = Cp*Co analogue is produced together with an icosahedral
dimetallacarborane that remarkably has lost a cage C vertex.
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This conclusion is based on the very similar 11B NMR chemical
shift ranges of 1 and 3, +8 to �13 ppm and +9 to �14 ppm,
respectively, and the notable absence in 3 of a high-frequency
resonance, ca. +21 ppm, characteristic of a 4,1,8-MC2B10 species.

3

The detail of the pattern of the 11B spectrumof3 (1:1:1:1:1:2:1:2) is
slightly different from that of 1, but in both cases the integral-2
resonances are merely accidental 1 + 1 coincidences.

The third reaction product, compound 4, was fully character-
ized. Two different {Cp*Co} fragments are implied by the 1H
NMR spectrum, which also contains resonances attributable to
THF but at relatively high frequencies, suggesting a formal
[C4H8O]

+ unit bound to the cage through a trisubstituted oxygen
atom. The 11B spectrum reveals six resonances (1:1:1:2:2:2) the
highest frequency resonance of which is only a singlet, and this
suggests the presence of only nine B atoms, one of which does not
carry an exo H atom. The exact nature of 4 was established by a
crystallographic study (Figure 2).13

Compound 4 is the 12-vertex, distorted-icosahedral dimetal-
lamonocarborane 1-(40-F3CC6F4)-2,8-Cp*2-12-THF-2,8,1-closo-
Co2CB9H8, formally a zwitterionic species with charges of
1� on the cage and 1+ on O121. It is related to the reduced
precursor I by the following five processes, listed in random order
with no implication of a reaction sequence: addition of the first
{Cp*Co} fragment, addition of the second {Cp*Co} fragment,
loss of a {BH} fragment, loss of a {C(40-F3CC6F4)} fragment,
and transformation of {BH} into {B(THF)}. Of these processes
the loss of the {C(40-F3CC6F4)} fragment is the most remark-
able. Carbon vertex loss (decarbonation) is rare in carborane
chemistry. �Stíbr et al. have described the formation of arachno-
monocarboranes from [7,9-nido-C2B10H12]

2� in the presence of
Lewis base,14,15 and Xie has reported decarbonation of supraicosa-
hedral carboranes under similar conditions,16 but as far as we are
aware the formation of a closo metallamonocarborane by decarbo-
nation on metalation of reduced dicarborane is unprecedented.

The 2,8,1-M2CB9 icosahedral isomer has only been seen once
previously, the result of spontaneous direct insertion of a pendant
{Pt(dppe)}0 fragment into an 11-vertex closo MnCB9 cluster by
Stone et al.17 Current studies are directed toward the synthesis of
further homo- and heterobimetallic examples of this cluster

architecture by the reduction/metalation approach and toward
an understanding of the sequence of events involved in their
formation.18
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Figure 1. Molecular structure of 1 with most atoms labeled. B2 lies
between C1 and B6, B9 between B5 and C12, and B7 between B3 and
B10. Atoms (except H) are shown as 50% probability ellipsoids. Selected
distances (Å): Co4�C1 = 2.069(3), Co4�B2 = 2.156(4), Co4�B6 =
2.127(4), Co4�B10 = 2.125(4), Co4�B7 = 2.170(4), Co4�B3 =
2.247(4).

Figure 2. Molecular structure of 4 with most atoms labeled. The
heteroborane numbering follows the standard convention.19 Atoms
(except H) are shown as 50% probability ellipsoids. Selected distances (Å):
Co2�C1=2.081(6),Co2�B3=2.065(7),Co2�B7=2.107(7),Co2�B11=
2.089(7), Co2�B6 = 2.029(7), Co8�B3 = 2.056(7), Co8�B4 = 2.036(7),
Co8�B9 = 2.071(7), Co8�B12 = 2.051(7), Co8�B7 = 2.079(7),
B12�O121 = 1.555(7).
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