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1-Vinylpyrrole-2-carbaldehydes react with phosphorus pentachloride (benzene, 10–15 �C) to afford E-2-
(2-dichloromethylpyrrol-1-yl)vinylphosphonium hexachlorophosphates in up to 85% yield, which after
treatment with SO2 (benzene, rt) are converted into E-2-(2-dichloromethylpyrrol-1-yl)vinylphosphonyl
dichlorides in 50–75% yields.

� 2011 Elsevier Ltd. All rights reserved.
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Pyrroles with diverse phosphorus functions, for example, pyrr-
olylphosphines, which act as hybrid ligands combining soft and
hard donor sites, have attracted widespread attention in coordina-
tion and organometallic chemistry.1 This is due, to a large extent,
to the ability of these ligands to display hemilabile behavior
toward platinum group metal centers.2 As a result, new families
of pyrrole-substituted phosphines have been synthesized.3 Tertiary
phosphines bearing pyrrolyl substituents have been successfully
applied as ligands in a variety of transition metal catalyzed reac-
tions (hydrogenation of alkenes and arenes,4 allylic substitution,5

isomerization of alkenes,6 etc.). Tris(pyrrolyl)phosphine was
shown to be suitable for development into a solid phase linker.7

5-(Diethoxyphosphorylmethyl)-5-methyl-4,5-dihydro-3H-pyrrole
N-oxide was successfully employed as an efficient spin trap.8 The
combination of a pyrrole moiety with a phosphorus-containing
function is expected to result in high and specific biological activ-
ity. An example of such a combination is the natural compound
psilocybin (dimethyltryptamine-4-phosphate), which is the active
principle of Mexican mushrooms with strong hallucinogenic
activity.9
ll rights reserved.

Trofimov).
The most general synthetic route to dihalogeno-, halogeno-, and
tertiary pyrrolyl phosphines involves phosphorylation of N-substi-
tuted pyrroles with P(III) halides.10

For the synthesis of pyrrolylphosphonates, the Arbuzov rear-
rangement of trialkyl phosphites under the action of haloalkyl pyr-
roles was employed.8 A conceptually new approach to the
synthesis of phosphorus-containing pyrroles, which is developing
rapidly, is based on available11 1-vinylpyrroles. Thus, secondary
phosphines, under radical initiation, add readily to 1-vinylpyrroles
to give the anti-Markovnikov adducts, diorganyl-2-(1-pyrrolyl)eth-
ylphosphines, in 88–91% yields.12 The 1-vinylpyrroles were also
used for the synthesis of phosphorylated pyrroles via reaction with
phosphorus pentachloride, the process affording various phosphor-
ylation products, both on the pyrrole ring and vinyl group.13 1-Vinyl-
2-trifluoroacetylpyrroles were phosphorylated with phosphorus
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pentachloride selectively at the vinyl group to furnish 2-(2-trifluoro-
acetylpyrrol-1-yl)vinylphosphonium hexachlorophosphates in high
yields,14 which were further converted under the action of SO2 into
2-(2-trifluoroacetylpyrrol-1-yl)vinylphosphonyl dichlorides in al-
most quantitative yields. Notably, in this case, the carbonyl group re-
mained intact.

The purpose of the present work was to study the reaction of
1-vinylpyrrole-2-carbaldehydes 1–3 with phosphorus pentachlo-
ride and thereby synthesize new families of functionalized phos-
phorylated pyrroles. The starting pyrroles 1–3 were readily
accessible via the recently developed efficient selective formylation
of 1-vinylpyrroles.15 Pyrroles 1–3 were found to react smoothly and
stereoselectively with excess phosphorus pentachloride in benzene
(10–15 �C)16 involving both the formyl and vinyl groups to deliver E-
2-(2-dichloromethylpyrrol-1-yl)vinylphosphonium hexachloro-
phosphates 4–6 (Schemes 1 and 2; Table 1).

The best yield of the phosphorylated product was obtained with
the condensed pyrrole, 1-vinyl-4,5-dihydrobenz[g]indole-2-carb-
aldehyde (3) (Scheme 2).

In the 31P NMR spectra of salts 4–6, signals in the regions
�296.2 to �269.1 ppm and 89.7–93.9 ppm, assignable to PCl6

�

and PCl3
þ, were observed. The signals for the trichlorophosphoni-

um cation (PCl3
þ) appeared as doublets of doublets (1JP–H–2JP–H =

13.2–33.8 Hz) indicating the E-configuration for the ethene moiety.
For E-isomers of similar compounds, J values are 18–30 Hz, while
for the corresponding Z-isomers, they can be up to 60 Hz.17 The
1H and 13C NMR spectra, as well as 2D HMBC, were in full agree-
ment with the assigned structures of salts 4–6. In the 31P NMR
Table 1
Spectroscopic data for compounds 4–6, 8–10 and 12

Producta Yield
(%)

NMR (DMSO-d6, d, ppm); 1H (

1H 13

4 65 8.31 (m, 1H, N–CH@), 7.21 (m, 1H, H-5), 6.82 (s, 1H, CHCl2),
6.45 (m, 1H, H-3), 6.23 (m, 1H, H-4), 6.16 (m, 1H, P–CH@)

1
3

5 44 9.11 (m, 1H, N–CH@), 8.41–8.33 (m, 5H, Ph) 7.54 (m, 1H, H-3),
7.22 (m, 1H, H-4), 7.10 (s, 1H, CHCl2), 6.59 (m, 1H, P–CH@)

1
1
1

6 85 8.89 (m, 1H, N–CH@), 8.20–8.01 (m, 4H, Ar) 7.49 (s, 1H, H-3),
6.96 (s, 1H, CHCl2), 6.51 (m, 1H, P–CH@), 3.21 (m, 2H, CH2),
2.88 (m, 2H, CH2)

1
1
3
(C

8 75 8.22 (m, 1H, N–CH@), 7.12 (m, 1H, H-5), 6.80 (s, 1H, CHCl2),
6.39 (m, 1H, H-3), 6.20 (m, 1H, H-4), 6.07 (m, 1H, P–CH@)

1
4

9 50 9.87 (m, 1H, N–CH@), 8.28–7.82 (m, 5H, Ph) 7.70 (m, 1H, H-3),
6.97 (s, 1H, CHCl2), 6.81 (m, 1H, H-4), 5.73 (m, 1H, P–CH@)

1
1
1

10 68 8.81 (m, 1H, N–CH@), 8.29–7.98 (m, 4H, Ar) 7.50 (s, 1H, H-3),
6.99 (s, 1H, CHCl2), 6.50 (m, 1H, P–CH@), 3.21 (m, 2H, CH2),
2.80 (m, 2H, CH2)

1
1
3
(C

12 41 8.26 (m, 1H, N–CH@), 7.13 (m, 1H, H-5), 6.77 (s, 1H, CHCl2),
6.41 (m, 1H, H-3), 6.20 (m, 1H, H-4), 6.21 (m, 1H, P–CH@)

1
4

a Compounds 4–6 are deep-colored (from purple to dark-green) crystals, unstable i
Elemental analyses of compounds 5, 6, 9, 10 and 12 correspond well with calculated va
spectrum (MeNO2) of salt 4, a multiplet appeared at 66.6 ppm,
where signals with 1JP–H = 25.7 and 7.9 Hz were present. The latter
were attributable,18 to 3,3-dichloro-6-(dichloromethyl)-1H-1k5-
pyrrolo-[1,2-a]-1,3-azaphospholidinium hexachlorophosphate 7
(approx. 8–10%, 31P NMR), which was probably formed via electro-
philic cyclization of the Z-isomer of 4 (Scheme 3).

The phenyl substituent, being an acceptor toward the 1-vinyl-
pyrrole moiety, decreases the nucleophilicity of the double bond,
which probably results in the lower yield of the corresponding salt
5. In the case of pyrrole 3, the adverse effect of the phenyl substi-
tuent is compensated by the saturated fragment (the alkyl substi-
tuent at pyrrole position 4), which increases the yield of salt 6.
400 MHz);13C (100 MHz); 31P (161.98 MHz)

C 31P

48.7 (d, 2JP–C = 37.5 Hz, N–CH@), 130.9 (C-2), 121.4 (C-5), 114.2 (C-
), 112.6 (C-4), 95.8 (d, 1JP–C = 180.0 Hz, P–CH@), 62.0 (CHCl2)

�296.1
(PCl6

�) 92.1
(PCl3

þ)
50.6 (d, 2JP–C = 38.0 Hz, N–CH@), 135.5 (C-2), 133.5 (C-5), 133.0,
32.8, 132.6, 131.9, 131.1, 130.9 (CPh), 119.5 (C-3), 118.4 (C-4),
02.3 (d, 1JP–C = 170.0 Hz, P–CH@), 62.5 (CHCl2)

�296.2
(PCl6

�) 89.7
(PCl3

þ)
47.6 (d, 2JP–C = 37.9 Hz, N–CH@), 139.8, 136.6 (CAr), 132.2 (C-2),
32.0 (C-5), 128.8, 127.7, 126.7, 126.1 (CAr), 125.5 (C-9a), 121.0 (C-
a), 120.5 (C-3), 118.4 (C-4), 105.3 (d, 1JP–C = 171.3 Hz, P–CH@), 64.7
HCl2)

�296.1
(PCl6

�) 93.9
(PCl3

þ)

41.3 (d, 2JP–C = 21.0 Hz, N–CH@), 131.5 (C-2), 128.7 (C-5), 114.0 (C-
), 112.3 (C-3), 106.5 (d, 1JP–C = 167.0 Hz, P–CH@), 61.8 (CHCl2)

31.9 (POCl2)

42.9 (d, 2JP–C = 19.9 Hz, N–CH@), 137.0 (C-2), 134.0 (C-5), 131.5,
30.4, 129.8, 129.6, 129.1, 128.0 (CPh), 124.1 (C-3), 117.9 (C-4),
12.5 (d, 1JP–C = 193.8 Hz, P–CH@), 62.9 (CHCl2)

33.7 (POCl2)

41.5 (d, 2JP–C = 27.8 Hz, N–CH@), 139.5, 136.0 (CAr), 132.2 (C-2),
31.8 (C-5), 128.8, 127.1, 126.6, 126.7 (CAr), 125.3 (C-9a), 120.8 (C-
a), 120.2 (C-3), 118.4 (C-4), 105.5 (d, 1JP–C = 191.3 Hz, P–CH@), 64.9
HCl2)

34.4 (POCl2)

40.9 (d, 2JP–C = 25.8 Hz, N–CH@), 131.7 (C-2), 128.8 (C-5), 114.9 (C-
), 111.9 (C-3), 107.1 (d, 1JP–C = 208.8 Hz, P–CH@), 61.8 (CHCl2)

12.4
(PO(OH)2)

n air. Compounds 8–10 and 12 are colored (from purple to brown) viscous oils.
lues.
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When salts 4–6 were subjected to a reaction with SO2 (benzene,
rt),19 E-2-(2-dichloromethyl-1-pyrrol-1-yl)vinylphosphonyl dichlo-
rides 8–10 were formed in 50–75% yields (Scheme 4; Table 1).

In the 31P NMR spectra of dichlorides 8–10, signals in the region
31.9–34.4 ppm (dd, 1JP–H = 23.1–24.8 Hz) belonging to the POCl2

moiety were present. The 31P NMR spectrum of dichloride 8, exhib-
ited a low intensity signal at 20.7 ppm, which provided evidence
for the presence of the corresponding cyclic phosphinyl chloride
11 (6%, 31P NMR, Scheme 5).

Finally, phosphonyl chloride 8 is easily converted into the cor-
responding phosphonic acid (Scheme 6; Table 1).20

In summary, the stereoselective facile phosphorylation of
1-vinylpyrrole-2-carbaldehydes with phosphorus pentachloride
has been elaborated. The first representatives of novel families of
highly functionalized phosphorylated pyrroles, E-2-(2-dichlorom-
ethylpyrrol-1-yl)vinylphosphonyl dichlorides, E-2-(2-dichlorom-
ethylpyrrol-1-yl)vinylphosphonium hexachlorophosphates and
E-2-(2-dichloromethyl-1-pyrrol-1-yl)vinylphosphonic acids have
been synthesized. These compounds are promising intermediates
and building blocks for a variety of phosphorus-containing
pyrroles.
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