Tetrahedron Letters, Vol. 28, No. 14, pp 1527-1528, 1987 Printed in Great Britain

A FACILE RING CLEAVAGE OF CYCLIC KETONES. SYNTHESIS OF 9-(ALKOXYCARBONYLALKYL)PYRIDO[1,2-a]PYRIMIDINES

Zhi-tang Huang* and Xiao-jun Wang Institute of Chemistry, Academia Sinica, Beijing, PR China.

Abstract: 2-(Hexahydro-2-pyrimidinylidene)cycloalkanones 1 react with ethyl propiolate in alcoholic solution to give 9-(alkoxycarbonylalkyl)-pyrido[1,2-a]pyrimidines 3 via ring cleavage of cyclic ketones.

We have reported the reaction of heterocyclic ketene aminals with ester of α,β -unsaturated acids to give imidazo[1,2-a] pyridine and pyrido[1,2-a] pyrimidine derivatives <u>via</u> addition, <u>cis-trans</u>-isomerization and cyclocondensation sequence 1. In cases of γ -lactone substituted ketene aminals, the spiro compounds may be obtained 2, but as it reacted with propiolate in alcoholic solution, ring cleavage of γ -lactone also occurred 3. Here we wish to report the results of the reaction of cycloalkanone substituted ketene aminals 1 with ethyl propiolate.

2-(Hexahydro-2-pyrimidinylidene)cycloalkanones <u>1</u> readily reacted with ethyl propiolate in heated methanol, and instead of the spiro compounds <u>2</u>, 9-(methoxycarbonylalkyl)pyrido[1,2-a]pyrimidines <u>3</u> were obtained in good yields. The constitutions of <u>3</u> (R'=CH₃) were determined by MS, elemental analyses and the IR, and ¹H and ¹³C NMR spectra. When the reaction was conducted in ethanol, <u>3</u> obtained were ethyl ester (R'=C₂H₅).

The formation of $\underline{3}$ is obviously due to the ring cleavage of cyclic ketones $\underline{2}$ formed initially. Therefore, a reasonable reaction path of the formation of $\underline{3}$ from $\underline{1}$ and ethyl propiolate in alcoholic solution can be rationalized as shown below.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array}\end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\$$

In the literature, ring cleavage of cyclic α -nitroketones under basic or acidic conditions have widely been investigated, and the results have been reviewed by Fischer and Weitz⁴. The ring cleavage of cyclic ketones^{5,6} and

 α -acyl cyclic ketones 7 were also reported, but the reaction conditions were always drastic or in strongly basic medium. The ring cleavage of spiro diketone in alkali solution was also once reported 8 . The formation of 2 by ring cleavage of cyclic ketone in neutral and mild conditions is a rather seldom example. The causes of easy cleavage of cyclic ketone of 2 are probably due to the α -vinylogous amide and α -imine groups, and also most possibly to this spiro structure.

ine reaction conditions, m. p. and yields of products are listed i	tion conditions, m. p. and yields of pr	roducts are listed in Table.
--	---	------------------------------

Entry	S	ubstrate	a	Conditions ^b	Pr	oduct ^a	m.p.(°C)	Yield ^c (%)
1	<u>1a</u>	n=0, R=	H	methanol, 40°C, 25 h	<u>3a</u>	R' = CH ₃	118-120	78
2	<u>1 b</u>	n=1, $R=1$	Н	methanol, 40°C, 20 h	<u>3b</u>	$R' = CH_3$	120.5-122.	5 86
3	<u>1c</u>	n=2, $R=1$	Н	methanol, reflux, 40 h	<u>3c</u>	$R' = CH_3$	97-98.5	90
4	<u>1 d</u>	n=3, $R=1$	Н	methanol, reflux, 40 h	<u>3d</u>	$R' = CH_3$	92 - 95	82
5	<u>1 e</u>	n=1, R=	CH ₃	methanol, 40°C, 20 h	<u>3e</u>	$R' = CH_3$	120-123	83
6		<u>1e</u>		ethanol, 50°C, 30 h	<u>3f</u>	R' = C ₂ H ₅	88-90	61
7		<u>1 e</u>		ethanol, 50°C, 25 h	<u>3g</u>	$R' = C_2 H_5$	126-128.5	71

 a MS, IR, 1 H and 13 C NMR data and elemental analyses are consistent with all new compounds obtained. b Molar ratio of $\underline{1}$: ethyl propiolate is 1:1. c Isolated yields.

The starting compounds $\underline{1}$ were obtained by the reaction sequence shown below.

<u>Acknowledgement</u>: This work was supported by the National Natural Foundation of China.

References:

- 1. (a) Z.-t. Huang, L.-h. Tzai, Chem. Ber., 119, 2208 (1986);
 - (b) Z.-t. Huang, Z.-r. Liu, Heterocycles, 24, 2247 (1986).
- 2. Z.-t. Huang, H. Wamhoff, Chem. Ber., 117, 1926 (1984).
- 3. Z.-t. Huang, H. Wamhoff, Chem. Ber., 117, 1856 (1984).
- 4. R. H. Fischer, H. M. Weitz, Synthesis, 1980, 272, and references cited.
- A. D.Treboganov, E. P. Zinkevich, A. A. Kraevskii, N. A. Preobrazhenskii,
 Zh. Org. Khim., 3, 1418 (1967); Chem. Abstr., 67, 116618w (1967).
- 6. T. Fujinami, K. Wakuda, N. Takanashi, S. Sakai, Chem. Lett., 1982, 123.
- 7. (a) S. Huenig, M. Salzwedel, Chem. Ber., <u>99</u>, 823 (1966);
 - (b) S. Huenig, H.-J. Buysch, Chem. Ber., <u>100</u>, 4017 (1967).
- 8. J. R. Williams, G. M. Sarkisian, J. Quigley, A. Hasiuk, R. VanderVennen, J. Org. Chem., 39, 1028 (1974).

(Received in Japan 18 November 1986)