carbon double bond systems in reactions with compounds possessing a labile hydrogen atom (HNu) to give products containing the amidinoethyl group A. $$-CH_2-CH_2-C \stackrel{N-R^1}{\underset{R^3}{\bigvee}}$$ This new process has been termed the amidinoethylation reaction and has some resemblance to the Michael addi- $$H_2C = CH - C + HNu \rightarrow Nu - CH_2 - CH_2 - C + HNu \rightarrow Nu - CH_2 - CH_2 - C + HNu - CH_2 - CH_2 - CH_2 - C + HNu C + HNu - CH_2 - C + HNu - CH_2 - C + HNu C$$ The Michael reaction (with C-nucleophiles) usually occurs in the presence of a basic catalyst. Therefore, owing to the strongly basic nature of the amidine function⁵, an autocatalytic effect could be expected for the amidinoethylation reaction. This effect has been observed in the addition of thiols 2 ($R^2 = n - C_4H_9$, C_6H_5) to propenamidines 1. $$H_2C=CH-C \xrightarrow{N-R^1} + R^2-SH \longrightarrow$$ 1 2 The analogous addition of thiols to the carbon-carbon double bonds of propenenitriles, propenoic acid, propenoates, or acrolein requires the presence of a basic catalyst such as ## Amidinoethylation - A New Reaction; I. The Amidinoethylation of Thiols; A Facile Synthesis of 3-Alkylthio- and 3-Arylthiopropanamidines1 Robert FUKS*, Marc VAN DEN BRIL Université Libre de Bruxelles, Chimie Générale I, Campus Plaine (206-4), Bd. du Triomphe, B-1050 Bruxelles, Belgium N-Substituted propenamidines were first prepared a few years ago^{2,3}. Since then a series of new N¹-1-butyl-N²-substituted-propenamidines 1 have become available'. We now describe the use of compounds 1 as activated carbon- Table 1. 3-Alkylthio- and 3-Arylthio-N'-t-butylpropanamidines 3 | Product
No. | R¹ | R ² | Yield ^a
[%] | m.p. (solvent) or b.p./torr | Molecular
formula ^b | |----------------|---|---------------------------------|---------------------------|--|---| | 3a | $4-C_2H_5OOC-C_6H_4$ | C ₆ H ₅ | 93 | 103-104 °C | C ₂₂ H ₂₈ N ₂ O ₂ S | | ВЬ | 2,6-di-Cl—C ₆ H ₃ | C_6H_5 | 98° | (C ₂ H ₅ OH)
156–157 °C | (385.5)
C ₁₉ H ₂₃ Cl ₃ N ₂ S | | Зс | 2 -NC $-C_6H_4$ | C_6H_5 | 92 | $(CHCl_3/C_2H_5OH/ether)$
65-66°C | (418.8)
$C_{20}H_{23}N_3S$ | | 3d | $4-O_2N-C_6H_4$ | C_6H_5 | 90 | (CH₃OH)
67–68°C | (338.5)
C ₁₉ H ₂₃ N ₃ O ₂ S | | le . | 2-ClC ₆ H ₄ | C_6H_5 | 98° | (CH₃OH)
144-145°C | $(358.5) C_{19}H_{24}Cl_2N_2S$ | | f | 2-H ₃ COOC C ₆ H ₄ | C_6H_5 | 90 | $(CHCl_3/C_2H_5OH/ether)$
83-84°C | (383.4) | | g | 4-C ₂ H ₅ OOC C ₆ H ₄ | n-C₄H ₉ | 90 | (C₂H₅OH)
69-70°C | $C_{21}H_{26}N_2O_2S$
(371.5)
$C_{20}H_{32}N_2O_2S$ | | 1 | 4-O ₂ N - C ₆ H ₄ | n-C ₄ H ₉ | 96 | (C ₂ H ₅ OH)
60-61 °C | (364.5) | | i | 2-NC—C ₆ H ₄ | n-C ₄ H ₉ | 89 | (C ₂ H ₅ OH)
37–38 °C
(C ₂ H ₅ OH) | $C_{17}H_{27}N_3O_2S$
(337.5)
$C_{18}H_{27}N_3S$
(317.5) | ^a Yield of recrystallised product. Isolated and characterised as hydrochloride. ^b The microanalyses were in satisfactory agreement with the calculated values (C ± 0.3 , H ± 0.2 , N ± 0.4). Table 2. I.R. and ¹H-N.M.R. Data for Compounds 3a-i | Prod-
uct | I.R. (KBr)*
ν [cm ¹] | ¹H-N.M.R. (CDCl ₃)
δ [ppm] | |--------------|---|---| | 3a | 3400 (s. NH); 2960 (w, C.—H _{arom}); 1960 (s, C.—O); 1640 (C.—N); 1590 (C.—C); 810 (w, C.—S) | 7.9-6.5 (m, 9H _{arom}); 4.4 (1H, NH); 4.35 (2H, OCH ₂); 2.85 (2H, SCH ₂); 2.3 [2H, CH ₂ —C(:::NR ⁺)—NHR ²]; 1.7-1.3 (12H); 1.35 (9H, <i>t</i> -C ₄ H ₉) ^b | | 3b | 2980 (w, C-H _{arom}); 1640 (vs, C-N); 1580 (vs, C-C); 840 (w, C-S) | 7.6–6.5 (m, $8H_{arron}$); 4.55 (1 H, NH); 2.9 (2 H, SCH ₂); 2.1 [2 H, CH ₂ C(= NR ¹) NHR ²]; 1.4 (9 H, t-C ₄ H ₉) ^b | | 3c | 3400 (s, NH); 3030 (w, C -H _{arom}); 2210 (s, C. N); 1630 (vs, C-N); 1590 (C-C); 820 (w, C-S) | 7.8–6.7 (m, 9 H_{arom}); 4.8 (1 H , N H); 3.0 (2 H , SC H_2); 2.5 [2 H , C H_2 : C(=N R^4) N H R 2]; 1.5 (9 H , t -C $_4$ H $_9$) | | 3d | 3390 (s, NH); 2990 (w, C H _{arom}); 1620 (vs, C=N); 1580 (vs, C=C); 1540 (vs, as-NO ₂); 1320 (vs, sym-NO ₂); 810 (w, C S) | 8.3–6.5 (m, $9 H_{arom}$); 4.6 (1H, NH); 2.9 (2H, SCH ₂); 2.4 [2H, $C H_{2} - C (-NR^{+}) NHR^{2}$]; 1.4 (9H, t - $C_{4}H_{9}$) | | 3e | 2980 (w, C.—H _{arom}); 1630 (vs, C.—N); 1580 (w, C.—C); 840 (w, C.—S) | 7.5-6.7 (m, 9H _{arom}); 3.3-2.6 [5 H, NH, SCH ₂ , CH ₂ —C(—NR ¹)—NHR ²] | | 3f | 3400 (s, NH); 3060 (w, C—H _{arom}); 1720 (vs, C—O); 1640 (vs, C—N); 1595 (w, C—C); 830 (w, C—S) | 8.0-6.5 (m, 9H _{arom}); 4.4 (1 H, NH); 3.8 (3 H, OCH ₃); 2.9 (2 H, SCH ₂); 2.4 [2 H, CḤ ₂ -C(-NR ¹) NHR ²]; 1.4 (9 H, <i>t</i> -C ₄ H ₉) | | 3g | 3400 (s, NH); 2980 (w, C—H _{arom}); 1695 (vs, C—O); 1640 (vs, C—N); 1590 (vs, C—C); 820 (w, C—S) | 8.1-6.6 (m, 4H _{arom}); 4.6 (1 H, NH); 4.35 (2 H, OCH ₂); 2.7-2.1 [6H, SCH ₂ , CH ₂ C(-NR ¹)-NHR ²]; 1.7-1.1 (16H); 1.4 (9 H, t-C ₄ H ₆); 0.9 [3 H, H ₃ C -(CH ₂) ₃ S] | | 3h | 3410 (s, NH); 2980 (w, C —H _{arom}); 1630 (s, C—N); 1580 (s, C—C); 1520 (s, as-NO ₂); 1320 (vs, sym-NO ₂); 810 (w, C —S) | 8.3–6.7 (m, 4H _{arom}); 4.9 (1H, NH); 2.8–2.2 [6H, SCH ₂ , CH ₂ C(=NR ¹) NHR ²]; 1.5 (9H, <i>t</i> -C ₄ H ₉); 1.5–1.2 (13H); 0.9 [3H, H ₃ C—(CH ₂) ₃ S] | | 3i | 3400 (s, NH); 2980 (w, C—H _{arom}); 2230 (m, C—N); 1630 (s, C—N); 1590 (m, C—C); 825 (w, C—S) | 7.6-6.6 (m, $4H_{arom}$); 4.95 (1H, NH); 2.9-2.1 [6H, SCH ₂ , CH ₂ -C(NR ¹)NHR ²]; 1.6-1.2 (13H); 1.5 (9H, t -C ₄ H ₉); 0.9 [3H, H ₃ C(CH ₂) ₃ S] | $v_s = v_s = v_s$; $v_s = v_s = v_s$; $v_s = v_s = v_s$; $v_s sodium methoxide or preferably benzyltrimethylammonium hydroxide for good yields of the product⁶. The present reaction, however, occurs on mixing equimolar amounts of 1 and 2 at room temperature. The reaction is exothermic and practically quantitative yields of 3 can be isolated (usually by crystallisation) after 15-60 min (Table 1). The progress of the reaction can be monitored by the disappearance of the vinyl --CH bands at ν =930 and 980 cm⁻¹ in the I.R. spectra. The autocatalytic effect in this reaction can be rationalised by assuming the initial formation of an amidinium thiolate, as shown below, which is a better nucleophile than the thiol. $$1 + 2 \longrightarrow H_2C = CH - C \bigoplus_{NH - C_4H_9 - t}^{NH - R^1} R^2 S^{\Theta}$$ $$\implies R^2 - S - CH = C \bigoplus_{NH - C_4H_9 - t}^{NH - R^1} \implies 3$$ An alternative preparation of compounds 3 with functional groups in the 3-position would be difficult or proceed only in low yields depending on the nature of the functional group⁷. As an example, the yield for cyanoethylation of thiols lies in the range 52–97% depending on the catalyst⁶. The transformation of a nitrile into an amidine proceeds in lower yields when a heteroatom is in the 3-position. The structures of all new compounds 3 prepared were confirmed by microanalysis, I.R., and ¹H-N.M.R. spectroscopy (see Tables). ## 3-Alkylthio and 3-Arylthio- N^1 -t-butylpropanamidines 3; General Procedure: The thiol 2 (0.011 mol) is added to the N'-t-butylpropenamidine 1 (0.01 mol) neat or in ethanol (15 ml) at room temperature. The temperature of the reaction mixture rises to $\sim 60\,^{\circ}$ C. The mixture is allowed to cool to room temperature and after 1 h chloroform (50 ml) is added. The mixture is washed twice with 5% aqueous sodium hydroxide solution (2 × 50 ml) and twice with water. The organic phase is separated, dried with magnesium sulphate, and evaporated. The residue 3 is recrystallised from an appropriate solvent (see Table 1) or, if liquid, converted to the hydrochloride for characterisation. Received: July 14, 1979 (Revised form: September 3, 1979) b DMSO-d₆ solution. Acrylamidines and polyacrylamidines; IV. For part 3 see M. Van Den Bril, R. Fuks, *Bull. Soc. Chim. Belg.* in press. ² R. Fuks, Eur. Polym. J. 9, 835 (1973). R. Fuks, Bull. Soc. Chim. Belg. 82, 571 (1973). For reviews see: E. D. Bergmann, D. Ginsburg, R. Pappo, Org. React. 10, 197 ^{(1959).} S. Patai, Z. Rappoport, The Chemistry of Alkenes, S. Patai, Ed., Interscience, New York, 1964, chap. 8, p. 469. S. I. Suminov, A. N. Kost, *Russ. Chem. Rev.* **38**, 884 (1969). K. Stuelen, *High Polym.* **24**, 1 (1970). ⁵ Y. Sevcik, F. Grambal, *Chemistry of Amidines and Imidates*, S. Patai, Ed., John Wiley and Sons, New York, 1975, p. 565. ⁶ C. D. Hurd, L. L. Gershbein, J. Am. Chem. Soc. 69, 2328 (1947). ⁷ R. Fuks et al., further papers in this series; in preparation.