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With the development of new techniques for the investigation of
molecules contacted to surfaces, and for instance to electrodes, electronic
properties of numerous chemical structures have been studied [1].
However, only a few hundreds of so called molecular wires have been
chemically contacted between two electrodes [2]. The investigation and
understanding of the influence of the chemical structure and the
molecule-electrode contact on the current-transport characteristics is
essential for the potential use of molecules in future commercial
electronic devices.

The use of metal-complexes integrated in nanosystems is particu-
larly promising for applications like information storage. Among plenty
of coordination compounds, polymetallic helical structures show
adequate structural features for contacting both sides to metal
electrodes [3]. However, to our knowledge, triple helicates functiona-
lized with anchoring groups for metal surface decoration have never
been reported. This is even more surprising since several examples of
double or triple bimetallic helicates have been reported in the literature
[4]. Among them, the 4,4'-methylenedianiline bridging motif combines
the simplicity of the synthesis and structural modification [5]. In
addition, various metals have already been complexed with derivatives
of thismolecule, and recently an enantiomeric resolution has even been
reported with analogous compounds [6].

In the course for the development of new electronic-active
molecular scaffolds, we designed and synthesized bimetallic helical
complexes based on a 4,4'-methylenedianiline bridging motif
(Scheme 1). More than a combination of three molecular organic
wires with new structural features, this work highlights the potential
possibility to tune the electronic transport properties by varying the
metal ions. In view of the recent studies concerning metal complexes
connected between electrodes, such potential molecular cables are of
highest interest in the field of molecular electronics [7].
In this communication, we present the synthesis of two triple
helicesmade by the assembling of three organic ligands L1 around two
zinc(II) or iron(II) cations respectively. This preliminary work
emphasises the simplicity of the strategy to build hybrid scaffolds
combining rigidity and functionality of the organic structure, and
additional properties of metal complexes.

The ligand L1 was synthesized in three steps (Scheme 2). First, a 5-
bromo-pyridine-2-carboxaldehyde was prepared following a reported
procedure [8]. A Suzuki-type cross-coupling reaction with 4-thio-
methyl-phenyl-boronic acid gave the thiomethyl-functionalized alde-
hyde in good yield. Finally, a double imine-condensation of this latter
with 4,4'-methylenedianiline in ethanol afforded the desired ligand [9].

Both complexes were synthesized by mixing a CH2Cl2/MeOH 5/1
solution of the ligand L1 with a MeOH solution of the corresponding
metal salt. While the perchlorate salt of the L13Zn2 complex
precipitated during the reaction, the hexafluorophosphate salt of
the L13Fe2 complex could be obtained by addition of a methanolic
NH4PF6 solution [10,11].

The two binuclear complexes were characterised by 1 H NMR, IR,
UV–vis spectroscopy, ESI mass spectrometry, elemental analysis, and
single-crystal X-ray diffraction.
1. Double end-functionalized dinuclear triple helices.
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Scheme 2. Synthesis of the functionalized ligand L1 and its two binuclear metal complexes.

Fig. 2. ESI mass spectrum of the dinuclear zinc(II) helix in MeCN. (Inset: isotopic
distribution of the [L13Zn2]4+ complex, L1=C39H32N4S2).
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Interestingly, while the zinc(II) helix shows a clearly resolved 1 H
NMR spectrum, the iron(II) helix shows two broad bands at 5.68 and
7.00 ppm (Fig. 1). This can be ascribed to the hindered phenyl ring
rotation between the two metals, as suggested for a similar compound
[12]. Temperature dependent 1 H NMR spectra support this conclusion.

Another different behaviour between the two helical structures in
solution is observed in the ESI mass spectra.While the perchlorate salt
yields predominantly the [L13Zn2]4+ (=[M]4+) and the [M+ClO4]3+

peaks (Fig. 2), the mass spectrum of the hexafluorophosphate salt
displays additional peaks which can be attributed to aggregation of
several helical complexes with its counterion of general form [Mx

(PF6)y](4x−y)+. However, the cation/ligand ratio is always in agree-
ment with a triple helical bimetallic structure, confirming its very
selective formation.

Single crystals of the Zn2-helix suitable for X-ray analysis were
obtained from an acetonitrile solution. The compound crystallises in the
monoclinic space group C2/cwith six acetonitrile solvate molecules per
formula unit. As expected, three ligands fold around twometal ions in a
Fig. 1. 1H NMR spectra of the two complexes at room temperature.
helical shape (Fig. 3). The zinc cations are complexed by the pyridine-
imine chelating groups, forcing a distorted octahedral geometry. As
expected, the six sulphur atoms are located on both sides of the helical
structures. The two planes containing respectively the three outer
sulphur atoms are nearly coplanar (10.5°) rendering them almost ideal
for contacting them between metal (gold) electrodes. The intermetallic
distance in this complex is 1.187 nm.

Single crystals of the Fe2-complex suitable for X-ray analysis were
obtained from a MeCN/Et2O solution [13]. In addition to the similar
triple helical arrangement of the ligands around the two metal ions,
this reveals the presence of four PF6− anions as expected for a bis-iron
(II) complex in perfect agreement with the mass spectrometric
finding of quadruply charged complex cation. The intermetallic
distance in this second complex is 1.144 nm.

A careful look at the crystal structure shows the difference of
distances between the bridging phenyl rings between both complexes
(Fig. 4). The shorter distances of the carbon atoms connected to the
imine nitrogen of the Fe(II) complex are induced by the shorter metal–
nitrogen bond distances. This observation is in agreement with the
hindered rotation of the phenyl rings in this compound as state above.

In the present communication, we report a new synthetic route of
potential nano-cables suited for molecular electronics. Using this
strategy, we succeeded in the preparation, and complete chemical and
structural characterization of two new coordination compounds with
additional groups for metal surface anchoring. Formed by the self-
assembly of three conjugated organic rods around two metal ions, this
work highlights the large variety of the possible structural modifications.
Fig. 3. View of the bis-zinc(II) triple helicate showing the internuclear distance.
Perchlorate anions have been omitted for clarity.
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Fig. 4. View of the coordination sphere with the M–N distances (in blue), and the nearest C atoms of the phenyl rings (in purple) for the Zn(II) and the Fe(II) cations respectively.
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The syntheses of derivatives with different bridging units, anchoring
groups and metal ions appear very promising.
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Appendix A. Supplementary material

CCDC 667923 and 667924 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via http://www.ccdc.
cam.ac.uk/data_request/cif. Supplementary mzterial associated with this
article can be found, in the online version, at doi:10.1016/j.
inoche.2010.09.026.
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