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AlthOUgh 13C-n.m.r. spectroscopy is used in carbohydrate chemistry as a 
routine, spectroscopic method’, only a few, systematic, 13C-n.m.r. studies have been 
published on carbohydrate compounds that are closely related structurally. A recent 
paper’ reported 13C-n.m.r. studies on D-glucopyranose acetates, and, very recently, 
the 13C, shift parameters were described for di- and tri-O-(3-nitropropanoyl)-D- 
glucopyranoses3 and for mono- and di-methylated derivatives of methyl 2-acet- 
amido-2-deoxy-c+ and -/3-D-glucopyranosides4. However, no systematic study has 
yet appeared on the substituent-induced, ’ 3C chemical-shift parameters for carbo- 
hydrate structures other than those having the D-gluco configuration. 

In this article, we report 13C assignment s for some partially and two fully 
acetylated L-rhamnose derivatives, and discuss the displacement of the “C-lines 
of the ring-carbon atoms that occurs upon acetylation. 

Em-AL 

General. - For general methods, see ref. 5. The 13C-n.m.r. spectra were 
recorded with a Varian XL-IOO-FT spectrometer at 25.16 MHz, for solutions in 
chloroform-d, using tetramethylsilane as the internal reference standard, with proton- 
noise decoupling. The ‘JcmI ,H-l values were measured by using the gated decoupling 
technique_ The [aID values were measured for solutions in chloroform, at concentra- 
tions of 0.5-2.0; those for compounds having HO-1 free refer to the equilibrium 
values. Acetic anhydride-pyridine was used for acetylation, acetolysis was performed 
at 0’ in a mixture of acetic anhydride and sulfuric acid, and hydrogenolysis was 
conducted at atmospheric pressure and room temperature in ethanol in the presence 
of 10% Pd-C. 

1,2,3,4-Tetra-O-ace@-a-L-rhamnopyranose (1) was prepared by acetylation 

*Present address: BIOGAL Pharmaceutical Works, Debrecen, Hungary 4042. 
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of 1,2,3-tri-0-acetyl-a-L-rhamnopyranose (2), which was obtained from methyl 
4-0-benzyl-cc-L-rhamnopyranoside 6 by acetolysis followed by chromatography to 
yield 1,2,3-tri-0-acetyl40-benzyl-a-r--rhamnopyranose (3), and hydrogenolysis of 3. 
1,2,3,4-Tetra-O-acetyl-j?-L-rhamnopyranose’~8 (4) was obtained by acetylation of 
1,3,4-tri-0-acetyl-/3-L-rhamnopyranose* (5), which was prepared either by hydrolysis 
of 2,3,4-tri-0-acetyl-a+rhamnopyranosyl bromide (6) in aqueous acetone in the 
presence of silver carbonate, or by hydrolysis of 6 in acetate buffer solutionlo. 

Treatment of 5 in aqueous ethanol with pyridine caused migration of the acetyl 
group from O-l to O-2, yielding 2,3.4-tri-0-acetyl-cc-L-rhamnopyranose (7) together 
with a small proportion of the /l anomer. The 2,3-diacetate (S), as an - 5 : 1 mixture 
of the cc and @ anomers, was prepared by hydrogenolysis of benzyl 2,3-di-O-acetyl- 
4-0-benzyl-E-L-rhamnopyranoside (9) The 2,4-diacetate (10) was obtained in 
controlled, acid methanolysis of 3,4-di-0-acetyl-l,2-O-(l-methoxyethylidene)-B_L- 
rhamnopyranose13*‘4*1 6 (ll), which was synthesized in 73 % yield from 6 and methanol 
in the presence of ethyldiisopropylamine in NJV-dimethylformamide-dichlorometha- 
ne. Acetic acid hydrolysis of 3,4-di-0-benzyl-1,2-O-(l-methoxyethylidene)-B_L- 
rhamnopyranose’4*‘6 (12) gave mainly 2-0-acetyl-3,4-di-0-benzyl-L-rhamnopyranose 
(13), acetylation of which yielded a mixture of 1,2-di-0-ace@-3,4-di-O-benzyl-a- (14) 
and -/3-L-rhamnopyranose (15), from which 14 could be isolated in pure form by 
crystallization_ Catalytic hydrogenation of 14 gave I ,2-di-0-acetyLx-L-rhamno- 
pyranose (16). 1,2-Di-0-acetyl+L-rhamnopyranose (17) was obtained, in admixture 
with 16, from the mixture of 14 and 15. 

The 3,4-diacetate 18 was prepared from benzyl 3,4-di-0-acetyl-2-0-benzyl-a-L- 
rhamnopyranosidei6 (19) by hydrogenolysis. The fifth diacetate, 1,4-di-O-acetyl-a-~- 
rhamnopyranose (20) was obtained from benzyl 4-O-acetyl-2,3-O-isopropylidene-cr- 
L-rhamnopyranoside (21) by successive catalytic hydrogenation, acetylation, and 
hydrolysis with trifluoroacetic acid. Benzyl 4-0-acetyl-cr-t.-rhamnopyranoside (22) 
was obtained by acetic acid hydrolysis of benzyl CO-acetyl-e_uo- and -endo-2,3-0- 

benzylidene-a-L-rhamnopyranoside”. Finally, the Cacetate 23 was prepared by 
hydrogenolysis of this benzylidene mixture. The physical data for, and ‘H-n.m.r. 
spectra of, these compounds are summarized in Table I. 

RESULTS AND DISCUSSION 

The 13C-n.m.r., chemical-shift assignments for the acetylated L-rhamno- 
pyranosides are shown in Table II, which also includes, for reference purposes, 
derivatives containing both acetyl and benzyl groups. The lines corresponding to 
C-l and C-6 were readily recognized by their characteristic, chemical shifts. In the 
partially benzylated derivatives (3,9,13,14,15,19, and 22), the carbon atoms linked 
to benzyloxy groups could be easily selected, because of a large, downfield shift 

*Compound 5 was previously reported9 as a minor side-product in a glycosidation reaction. Neither 
the m.p. nor the [a]~ value was given. 
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TABLE II 

13C-N.M.R. CHEMICAL-SHIETS AND lJC-_l,H-_l COUPLING-CONSTANTS= OF ACIXYLATED L-RHAMNOSE 

DERIVATIVES 

Atom 

C-I c-2 c-3 c-4 C-S c-6 

Compormdb 
1 

2 

3 
7 

8 

9 
10 

13 

14 

16 

18 

19 
20 

22 

23 

Compound= 
4 

5 

8 

13 
15 
x7 

18 

90.9 
(177) 

91.2 
(176.9) 

91.0 
92.1 

(172.4) 

92.1 

(171.2) 
96.8 

92.0 

(170.8) 

92.3 

91.3 

91.4 

(176.1) 

94.2 

97.3 
93.7 

99.4 

(172) 
94.2 

68.9 69.0 70.7 68.9 17.5 

69.1 71.9 70.7 71.0 17.6 

69.4 71.5 78.6 70.2 18.0 
7G.9 69.3 71.6 66.3 17.5 

71.2 72.0 71.2 68.6 17.7 

70.6 71.8 79.1 68-O 18.0 

73.5 68.2 75.0 66.2 17.5 

69.9 77.6 80.3 67.7 18.0 

68.1 77.7 79.6 70.1 18.0 

71.4 70.2 72.9 70.6 17.6 

70.0 71.8 71 .o 66.3 17.5 
76.1 71.9 71.7 66.8 17.5 
70.1 69.9 74.5 68.5 17.5 

71.2 70.1 75.0 66.4 17.4 

71.8 69.6 74.5 66.1 17.4 

68.8 70.9 70.6 71.5 17.5 90.6 

(163) 
92.0 

(163.5) 
92.6 

(160) 
93.0 
91.3 
91.6 

(166) 
93.9 

68.7 73.2 70.6 71.4 17.4 

70.5 71.2 74.1 72.6 17.7 

69.9 77.6 79.6 71.7 18.0 
67.8 79.4 79.9 71.7 17.9 
71.3 72.1 73.5 72.7 17.6 

70.0 73.7 70.3 71.8 17.5 

=In Hz, in parentheses. ba at C-l. C/3 at C-l. 

(5-7 p.p.m.) induced by the benzyl groups. The assignments for the other carbon 
atoms were made possible mainly by the regularities to be described. 

The acetylation of HO-l induces an upfield shift for C-l of .-OS p.p.m. in 
the a series, and - 1.5 p.p.m. in the p series. The direction and the relative magnitudes 
of these shifts are in agreement with those observed for D-glucose acetates’ and O- 
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(3-nitropropanoyl)-D-glucopyranoses3. This phenomenon seems to be a general 
one for pyranoses having an acyloxyl group at C-l. It has been presumed3 that the 
shielding of C-l relative to the derivatives having HO-l free is caused by the carbonyl 
group at O-l, which is forced into a shielding orientation by the ring-oxygen atom 
with respect to C-l. A similar, but less well-defined, mechanism has been suggested 
for this phenomenon in connection with the D-glucose acetates2. We consider that 
the upfield shift of the C-l signal that is caused by acylation of HO-l may be occasioned 
by more than one factor, and, although steric interactions cannot be neglected, 
through-bond interactions between the p-orbitals of the ring-oxygen atom and the 
acyloxyl group should also be considered as providing a possible contribution to 
the increased shielding at C-l. These interactions are obviously more favorable in 
the j3 anomer, as reflected by the greater chemical shift-difference induced by the 
/3- than by the a-acyloxyl group. 

The introduction of an acetyl group onto any of the secondary hydroxyl groups 
of L-rhamnopyranose causes a 1.7-3-p.p.m, negative (upfield) shift for the B-carbon 
atoms. However, the shifts for the a-carbon atom showed a rather inconsistent 
variation, ranging from 0 p.p.m. (d6 at C-4, in 2 compared to 1) to f2.2 p-p-m. 
(AS at C-3, in 23 compared to 18). A probable explanation for the seeming dis- 
crepancy of these data is the following: if the new acetyl group interacts with the 
neighboring substituent(s), forcing it into a shielding orientation with respect to the 

a-carbon atom, the usual, positive (downfield) shift, foundI on acetylation of cyclo- 
hexanol, is cancelled out. On the other hand, the typical a, downfield shifts of - +2 
p.p.m. are observed when such interactions are negligible (e.g., 16 compared to 
2,23 to 18, and 23 to 10). This explanation might account for the observation of only 
positive (dowtield) a-shifts of acylation for O-acyl-D-glucopyranoses3 having only a 
relatively small number of acyl substituents located relatively far from each other, 
and therefore lacking appreciable interactions between the substituents, and also for 
the negative (upfield) shifts* for the a-carbon atoms in acetylated D-glucopyranoses 
when the introduction of a new ace@ group results in fully substituted derivatives2. 

The cotiguration and type of substituent at C-l have a characteristic effect 
upon the chemical shift of C-5. A significant, downfield shift (+2.5 p.p.m.) is 
observed for C-5 when an a-OH is acetylated, whereas acetylation of a &OH group 
has practically no effect upon the chemical shift for C-5; this is readily understandable 
on the basis of the partial structure A, the effect of the a-acetoxyl group presumably 

c-2 H 

4 

*Actually, the “deacetylation shifts” were reported2 as being downfield. Conversely, the acetylation 
shifts are considered to he upfield. 
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being transferred sterically, and not through chemical bonds (1,3-diaxial interaction). 
If an a-acetoxyl group is linked to C-l, the C-5 signal appears in the range of 68.5 to 
71 p.p.m., whereas, when C-l bears a free a-OH group, or9 a-OMe or a-OBn group, 
the C-5 signal always appears below 69 p.p.m. On the other hand, if C-l bears a @-OH 
or /I-acetoxyl group, the resonance line of C-5 is always found to appear above 71.4 
p.p.m. Therefore, the position of the resonance line of C-5 can serve to distinguish 
between the anomers of an r_-rhamnopyranoside. 

The observed, characteristic effects induced by the acetyl group(s) in the 13C- 
n.m.r. spectra of L-rhamnose acetates should contribute to making 13C-n.m.r. 
assi,onments for more-complicated carbohydrate structures containing acetylated 
L-rhamnose units. 
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