CHEMISTRY LETTERS, pp. 57 - 60, 1985.

A SIMPLE AND EFFICIENT SYNTHESIS OF KEY SYNTHETIC INTERMEDIATES OF 4-DEMETHOXYANTHRACYCLINONES, $(\pm) - AND (R) - (-) - 7 - DEOXY - 4 - DEMETHOXYDAUNOMYCINONE$

Michiyo SUZUKI, Teruyo MATSUMOTO, Rumiko ABE, Yoshikazu KIMURA, and Shiro TERASHIMA* Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229

 (\pm) -2,5,12-Trihydroxy-1,2,3,4-tetrahydronaphthacene-6,11-dione-2-carboxylic acid was found to readily afford the racemic title compound by successive treatments with N,N'-carbonyldiimidazole and methylmagnesium bromide in the presence of trimethylsilyl triflate. The same reaction scheme could also furnish the optically pure title compound from the (R)-carboxylic acid produced by the optical resolution.

The 4-demethoxyanthracyclines, 4-demethoxyadriamycin(la) and 4-demethoxydaunorubicin(lb), attract much attention since these modified antibiotics are expected to show more improved therapeutic indices than natural anthracyclines (lc,d).¹⁾ (t) - and (R) - (-) - 7 - Deoxy - 4 - demethoxydaunomycinone((t) - and <math>(R) - (-) - 3) hold pivotal positions in the synthesis of 4-demethoxyanthracyclinones(2a,b), the aglycones of la,b.^{1,2)} Numerous methods have been hitherto explored for preparing these racemic and optically active key intermediates.¹⁻⁴⁾

In connection with our continuing synthetic studies on optically active 2a,b, we have recently developed the efficient preparation method of 5,12-dihydroxy-1,2, 3,4-tetrahydronaphthacene-2,6,11-trione($\frac{4}{2}$).⁵⁾ The method for introducing the C₇hydroxy group into (R)-(-)-3 in a highly stereoselective manner has also been explored.^{4,6)} Considering the simplicity and directness of the reaction scheme, the synthesis of (±)- and (R)-(-)-3 from (±)- and (R)-2,5,12-trihydroxy-1,2,3,4tetrahydronaphtacene-6,11-dione-2-carboxylic acid((±)- and (R)-6) readily accessible from $\frac{4}{2}$, has been anticipated to be one of the most promising large scale

preparation methods of these key intermediates.⁷⁾ However, this has never met a success probably due to the lack of the efficient reaction which can directly transform the carboxyl groups of (\pm) - and (R) -6 into the corresponding methyl ketones.

We wish to report here that $(\pm) - 6$ can afford a good yield of $(\pm) - 3$ in one pot reaction by sequential treatments with N,N'-carbonyldiimidazole and methylmagnesium bromide in the presence of trimethylsilyl triflate(TMSOTf). Moreover, since $(\pm) - 6$ can be effectively resolved into (R) - 6 by the use of (-) - N-methylephedrine, the explored overall process is found to be applicable to the preparation of optically pure (R) - (-) - 3 from 4.

Preparation of $(\pm)-6$ from 4 was performed according to a conventional method. Thus, cyanohydrin formation of 4 (KCN(15 equiv.)-AcOH(20 equiv.) in EtOH-THF(1:1), rt, overnight, then 1 mol dm⁻³ HCl) gave the unstable product($(\pm)-5$) in 83% yield. This was directly hydrolyzed (concd HCl-AcOH(1:2), reflux, 10 h) to give $(\pm)-6$ in 94% yield, mp 251-252 °C(from nitrobenzene)(lit.,⁸⁾ mp 253-258 °C).

With a large quantity of $(\pm)-6$ in hand, various methods were examined which had been reported to give a methyl ketone from the corresponding carboxylic acid. After several unsuccessful attempts, it was finally found that the reaction of Nacylimidazole($(\pm)-7$) with methylmagnesium bromide⁹ could afford the promising result. Thus, the reaction of $(\pm)-6$ with N,N'-carbonyldiimidazole(2.0 equiv.) in THF containing hexamethylphosphoric triamide(HMPA) (8.0 equiv.) (rt, 18 h) furnished $(\pm)-7$.^{10,11} Without isolation, $(\pm)-7$ was immediately treated with TMSOTF(1.0 equiv.) (-20 °C), then with methylmagnesium bromide (14.0 equiv.) (3 mol dm⁻³ in Et₂O, -40 °C, 3h), to give $(\pm)-3$ in 65% yield after quenching (1 mol dm⁻³ HCl), extractive isolation (EtOAc), and filtration with a short column (SiO₂: EtOAc/C₆H₆=1/9),¹² mp 213-215 °C(from C₆H₆)(lit.,^{3b)} mp 214-216 °C). In the absence of TMSOTF, the addition of the Grignard reagent to $(\pm)-7$ begins to occur only at -20 °C, affording a lower yield(at most 40% yield) of $(\pm)-3$. Therefore, $(\pm)-7$ seems to be activated with TMSOTF by silylation of the N³-position of the imidazole ring.

In order to apply the explored one pot process to the preparation of (R) - (-) - 3, the optical resolution of $(\frac{1}{2}) - 6$ was next examined. (-) - N-Methylephedrine was found to be the best optically active amine being necessary for the salt formation with $(\frac{1}{2}) - 6$. A mixture of $(\frac{1}{2}) - 6$ and (-) - N-methylephedrine¹³⁾ (mp 85-86 °C, $[\alpha]_D^{20}$

-30.2° (c 4.48, MeOH))(1.2 equiv.) in ethanol was heated at reflux for 2 h. The hot mixture was filtered to remove a small amount of insoluble materials, concentrated to half volume, then kept standing (rt, overnight), to precipitate the crude salt of (R)-6 in 51%(102%)¹⁴ yield, mp 200-204 °C, $[\alpha]_D^{20}$ -63.6° (c 0.10, CHCl₃). The crude salt was recrystallized twice from ethanol containing 0.2 equiv. of (-)-N-methylephedrin, to give the pure salt of (R)-6 in 31%(62%)¹⁴ yield, mp 217.5-220 °C, $[\alpha]_D^{20}$ -12.0° (c 0.05, CHCl₃). Regeneration of optically pure (-)-6 was simply achieved stirring a suspension of the pure salt in an aqueous acid (1 mol dm⁻³ HCl, 17 h), to give optically pure (R)-6 in a quantitative yield, mp >280 °C. Unfortunately, the optical rotation could not be measured because of the extremely low solubility of (R)-6 to almost all solvents.

While the absolute configuration and optical purity of optically active 6 could be determined by the successful synthesis of (R) - (-) - 3 (vide supra), the independent determination of these physical indices was examines at this stage by transforming optically active $\boldsymbol{\xi}$ into its derivatives. Esterification (MeOH-DMSO (5:1)-concd H_2SO_4 , reflux, 4 h) of optically active 6 gave the (-)-methyl ester ((-)-8) in 81% yield, mp 206.5-210 °C, $[\alpha]_D^{20}$ -55.0° (c 0.10, CHCl₃), after purification by column chromatography (SiO₂: C_6H_6 /EtOAc=5 $\sqrt{3}$). Recrystallization of this sample from toluene gave optically pure (-)-8, mp 210.5-211.5 °C, $[\alpha]_D^{20}$ -60.0° (c 0.10, CHCl₃). Methylation $(Me_2SO_4(3.9 \text{ equiv.})-K_2CO_3(3.9 \text{ equiv.})$ in Me_2CO_4 reflux, 5.5 h) of (-)-8 $([\alpha]_D^{20} -55.0^{\circ}(c \ 0.10, CHCl_3))$ followed by purification by column chromatography (SiO₂: Et₂O) produced the (+)-dimethoxy ester ((+)-9) in 90% yield, mp 152-154 °C(lit., 3a) mp 154-155 °C), $[\alpha]_D^{20}$ +11.7°(c 0.22, CHCl₃).¹⁵⁾ Measurement of the NMR spectrum of (+)-9 in the presence of the chiral shift reagent(Eu(hfc)₃) clearly disclosed that (+)-9 was optically pure. Accordingly, the optical purity of optically active 6 obtained by the resolution was established to be 100% ee.

In order to determine the absolute configuration, (+)-9 was further hydrolyzed (KOH(1.5 equiv.) in MeOH-THF-H₂O, rt, 3 h) to give the (+)-dimethoxy acid ((+)-10) in 82% yield, mp 202-207 °C(from hexane-EtOAc), $[\alpha]_D^{20}$ +16.9°(c 0.20, CHCl₃)(lit., ^{3a)} mp 200-201 °C, $[\alpha]_D^{20}$ +13.6°(c 0.43, CHCl₃); lit., ⁸⁾ mp 200-205 °C, $[\alpha]_D^{20}$ +14.0°(c 0.20, CHCl₃)). Since (+)-10 had been reported to belong to (R)series, ^{3a)} optically active 6 was definitely established to have (R)-configuration.

Finally, the synthesis of (R) - (-) - 3 from optically pure (R) - 6 was carried out following the reaction scheme explored by the use of $(\pm) - 6$. The same treatments of (R) - 6 as those described for $(\pm) - 6$ readily gave (R) - (-) - 3 in 58% yield, mp 195-203 °C, $[\alpha]_D^{20} - 85.7^{\circ}$ (c 0.11, CHCl₃), after filtration through a short silica gel column. Recrystallization from benzene gave optically pure (R) - (-) - 3, mp 214-216 °C, $[\alpha]_D^{20} - 90.6^{\circ}$ (c 0.11, CHCl₃) (lit., ⁴⁾ mp 218-219 °C, $[\alpha]_D^{20} - 90.3^{\circ}$ (c 0.11, CHCl₂)).

As mentioned above, we have succeeded in developing the efficient synthetic scheme which could convert $\frac{4}{5}$ into $(\frac{1}{2})$ - and $(R) - (-) - \frac{3}{5}$ by way of $(\frac{1}{2})$ - and $(R) - \frac{6}{5}$. Numerous synthetic approaches to anthracyclinones hitherto reported, terminate at or proceed through 1,2,3,4-tetrahydronaphthacene-2,6,11-trione derivatives.²⁾ Taking into account the operational simplicity and directness, the exprored process is considered to be one of the best synthetic routes which can add the racemic or optically active $C_{\rm q}\text{-}\alpha\text{-hydroxy}$ ketone moiety to those tetracyclic systems.

References

- 1) F. Arcamone, "Doxorubicin," Academic Press, New York(1981), pp. 259-299; M.B. Naff, J. Plowman, and V.L. Narayanan, "Anthracycline Antibiotics," ed by H.S. El Khadem, Academic Press, New York(1982), pp. 1-57.
- 2) S. Terashima, Yuki Gosei Kagaku Kyokai Shi, 40, 20(1982).
- 3) a) S-s. Jew, S. Terashima, and K. Koga, Chem. Pharm. Bull., 27, 2351(1979); b) N. Tanno and S. Terashima, ibid., 21, 811, 821(1983); c) S. Terashima and K. Tamoto, Tetrahedron Lett., 23, 3715(1982); Chem. Pharm. Bull. in press and references cited therein.
- 4) a) S. Terashima, K. Tamoto, and M. Sugimori, Tetrahedron Lett., 23, 4107(1982); Tetrahedron in press and references cited therein; b) K. Tamoto and S. Terashima, Proceeding of the 43th Symposium on the Synthetic Organic Chemistry, Tokyo, June 1983, Abstr., No. 2-8.
- 5) Y. Kimura, M. Suzuki, T. Matsumoto, R. Abe, and S. Terashima, Chem. Lett., 1984, 473.
- 6) Acetallization of (R)-(-)-3 with ethylene glycol (p-TsOH C_6H_6 , reflux, 5 h, 98%) followed by bromination $(Br_2 - CHCl_3 - CCl_4 - H_2O, hv)$ and treatment with 10% NaOH stereoselectively afforded crude (+)-2b in 48% yield (2 steps) (the ratio of (+)-2b to its C7-epimer >20:1). Direct recrystallization of this sample readily gave optically pure (+)-2b, mp 184-185 °C, $[\alpha]_D^{20}$ +156° (dioxane), in 34% yield (2 steps).
- 7) For the reported preparation method of $(\pm)-3$ from 4; see, M. Suzuki, Y. Kimura, and S. Terashima, Chem. Lett., 1984, 1543.
- 8) Japan Kokai Tokkyo Toho, JP 58-77844.
- 9) H.A. Staab, Angew. Chem., Int. Ed. Engl., 1, 351(1962).
- 10) Generation of (\pm) -7 was reasonably assumed according to the literature.⁹⁾ Isolation of $(\pm) - 7$ was not examined due to the high reactivity of $(\pm) - 7$ to water.
- 11) The use of HMPA seems to be inevitable for obtaining a higher yield of $(\pm)-7$.
- 12) This operation was required to remove a small amount of the tertiary alcohol, mp 234.5-237.5 °C, which was usually produced in less than 3% yield.
- 13) T. Mashiko, S. Terashima, and S. Yamada, Yakugaku Zasshi, 100, 319(1980).
- 14) Based on the amount of (R)- β originally involved in $(\pm)-\beta$.
- 15) This sample showed the following optical rotations; $[\alpha]_D^{20} 0.0^{\circ}(c \ 0.22, Me_2CO), [\alpha]_D^{20} -5.2^{\circ}(c \ 0.23, MeOH), [\alpha]_D^{20} -13.1^{\circ}(c \ 0.25, EtOH), and [\alpha]_D^{20} -23.5^{\circ}(c \ 0.22, C_6H_6).$ Although $[\alpha]_D^{20} -7.8^{\circ}(c \ 0.613, Me_2CO)$ was reported for this compound in the previous large 3π at the previous large in the previous report, ^{3a)} this rotation value should be corrected.

(Received October 11, 1984)

60