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Pseudouridine (w-uridine, W) aza0-analogues with a 5,5-bis(hydroxymethyl)-1-pyrrolin-2-yl 1-oxide as
the glycone mimic were obtained by the addition of (2,4-dimethoxypyrimidin-5-yl)magnesium bromide
to 1-aza-7,14-dioxadispiro[4.2.5.2]pentadec-1-ene 1-oxide (3), followed by oxidation and removal of the
protecting groups. The analogous synthesis from (2,4-dimethoxypyrimidin-5-yl)lithium and 3 was less
efficient; in the first step of the reaction sequence, competing dimerisation of 3 predominated over addi-
tion of the organolithium agent to 3.

� 2011 Elsevier Ltd. All rights reserved.
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Scheme 1. Retrosynthesis of the W-uridine analogues 1 and 2.
Pseudouridine (w-uridine, W, Scheme 1) is a natural C-nucleo-
side occurring in various types of RNA. It has been generally ac-
cepted that W plays a significant role in fine-tuning of RNA
functions and preservation of its structure during the translation
process.1 Moreover, the anti-mutagenic activity of W against
ionizing radiation or chemical mutagens, such as N-methyl-N0-
nitro-N-nitrosoguanidine or N-methyl-N-nitrosourea, has also
been reported.2 It has been suggested that its activity towards
the chemical mutagens is due to the entrapment of free radicals
derived from these mutagens.3a The biological significance of W
has stimulated many studies on the synthesis of W analogues as
potential antiviral and/or anticancer agents. Among the analogues,
derivatives with an aza-heterocyclic mimic of the natural glycone
have also been reported.3 The following aza-heterocycles have been
reported in the role of the glycone mimic: pyrrolidine,3a–k oxazole,3l

isoxazole,3m isoxazoline,3m isoxazolidine,3m,n imidazolidine,3o

thiazolidine3p or 1,2,4-oxadiazole.3q Among these aza-heterocyclic
W analogues, pyrrolidin-2-yl derivatives were examined for their
anti-HIV activity3a,b or base-pairing properties,3e–h while analogues
derived from oxazole,3l imidazolidine,3o or 1,2,4-oxadiazole3q were
evaluated for their inhibitory potency towards some specific
enzymes. The 1,2,4-oxadiazol-3-yl analogues showed inhibitory
activity towards procollagen C-proteinase,3q whereas the imidazo-
[1,2-a]pyridin-6-yl4 analogues were active as reversible inhibitors
of H+/K+ ATPase.

Herein, we report the synthesis of novel W aza0-analogues with
a 5,5-bis(hydroxymethyl)-1-pyrrolin-2-yl 1-oxide residue as the
glycone mimic, i.e. compounds 1 and 2 (Scheme 1). These com-
ll rights reserved.
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pounds possess a nitrone function that, in addition to the uracil
moiety, may act as the biologically active site. Our interest in syn-
thesizing these compounds was motivated by their possible appli-
cation as novel free radical traps. Replacement of the ribose moiety
by 1-pyrroline 1-oxide, a structural unit present in a number of
efficient free radical traps,5 would be expected to have an effect
on the aforementioned anti-mutagenic properties of pseudouri-
dine.2 Furthermore, the additional hydroxymethyl group at the 5
position of the 1-pyrroline 1-oxide ring is expected to prevent
the formation of final nitroxide-free radicals in the form of differ-
ent stereoisomers, a potential complication in their spectroscopic
studies resulting from the presence of asymmetric carbon centres
in alternative nitroxide-free radicals with one hydroxymethyl
group at this position.6 Our research on the synthesis of
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M. Koszytkowska-Stawińska et al. / Tetrahedron Letters 52 (2011) 1866–1870 1867
compounds 1 and 2 was also stimulated by reports on the thera-
peutic potential7 of nitrones against diseases resulting from an
imbalance between free radical formation and antioxidant produc-
tion in the body, e.g. neurodegenerative diseases or cancer.8 The
literature revealed that the stable nitroxide-free radicals formed
in this way protect cells against oxidative damage.9 Syntheses
and pharmacological properties of a number of nitrones with a het-
erocyclic substituent on the carbon atom of the nitrone function
have been described.5a,10 However, only a few examples of nitrones
bearing a nucleobase moiety,3l,m,11 or a nucleoside residue12 have
been reported. Recently, 5,5-dimethyl-2-(20-deoxyuridin-5-yl)-1-
pyrroline 1-oxide was reported, and postulated as a product of
trapping of the 20-deoxyuridin-5-yl radical derived from 5-halo-
20-deoxyuridines by 5,5-dimethyl-1-pyrroline 1-oxide (DMPO).13

It was detected by HPLC/ESI-MS/MS and characterized by 1H
NMR spectroscopy. However, as reported in the original paper, it
was not obtained on a preparative scale.

It is worth noting that nucleoside-derived free radicals (such as
the 10,20-didehydro-20-deoxyuridin-10-yl radical) have attracted
attention because of their postulated involvement in a variety of
nucleic acid damage processes.14

As mentioned previously, the literature data on nitrones
with a uracil-5-yl residue is rather limited.3l,3m,13 The reported
N-(uracil-5-ylmethylene)methanamine N-oxide or N-(uracil-5-ylmeth-
ylene)benzylamine N-oxide was obtained from the addition of
N-methyl- or N-benzylhydroxylamine, respectively, to uracil-5-
carboxaldehyde.3l,m Our synthetic approach to 1 and 2 (Scheme 1)
involves the addition of (2,4-dimethoxypyrimidin-5-yl)lithium
(4a) or (2,4-dimethoxypyrimidin-5-yl)magnesium bromide (4b)
to nitrone 3, as the key step of the synthesis. Although heteroary-
lation of acyclic aldonitrones with lithiated heteroaryl compounds
is of great importance in the synthesis of natural or biologically
active compounds,15 the literature data on the heteroarylation
of 1-pyrroline 1-oxides is rather limited; heteroarylations with
3-lithiopyridine,16a 2-lithiothiazole,16b or 2-lithiofuran16c have
been reported. To the best of our knowledge, 4a and 4b, or their
O-alkylated counterparts, have not been examined in heteroaryla-
tions of acyclic or cyclic aldonitrones. Compound 4a, or its O-alkyl-
ated counterparts, were employed in the syntheses of W-uridine,
its stereoisomers, or pyrrolidine analogues of W-uridine.3a–c,17

Previously, compound 3 was prepared in this laboratory from
c-nitroaldehyde 5 under reductive conditions [Zn/AcOH/Py,
Scheme 2, step (i)].18 However, the formation of 6 as a by-product
was also observed. The yield of 6 depended on the zinc dust source
and varied from 19% to 31%. Isolation of the organic reaction prod-
ucts from colloidal zinc salts, and the subsequent separation of 3
from 6 by crystallization or column chromatography were difficult.
Consequently, the yields of 3 were irreproducible and varied from
55% to 72%. The most recent reports on the preparation of 1-pyrro-
line 1-oxides reveal that the reduction of c-nitroaldehydes with Zn
still remains one of the most common methods for their prepara-
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Scheme 2. Reagents and conditions: (i) Zn, AcOH, Py, EtOH, �5–3 �C, 3 h; (ii)
HS(CH2)3SH, BF3�Et2O, CH2Cl2, 0 �C to rt, 2 h; (iii) Al/HgCl2, THF, H2O, rt, 2 h; (iv)
NaHCO3, MeI, MeCN, H2O, 45 �C, 2 h.
tion.6,19,20 However, the yields of the final nitrones depend on
the reaction conditions (and probably on the specific structure of
the starting c-nitroaldehydes): 82% (Zn/HOAc/EtOH/H2O)19a or
9–50% (MeOH/H2O/NH4Cl).6,19b,c Additionally, purification of the
target nitrones is rather complex. Based on reports on the synthesis
of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline 1-oxide21 (or its
deuterated analogues19a) by oxidation of the pyrrolidine precursor
(39–83%, depending on the oxidant used), we envisaged the prep-
aration of 3 via a reaction sequence involving reductive cyclisation
of 5, followed by oxidation of the pyrrolidine intermediate. How-
ever, our preliminary trials revealed that protection of the formyl
group was required prior to reduction of the nitro function to an
amine. Thus we anticipated that the preparation of the starting
pyrrolidine would require two additional steps, i.e. the aforemen-
tioned protection of the formyl group and then its deprotection
after reduction of the nitro group. It was clear that the final yield
of 3 using the envisaged method would be insufficient for prepara-
tive purposes. Therefore, in order to improve the preparation of 3,
we developed an alternative procedure which involved (Scheme 2):
(a) conversion of 5 into thioacetal 722 by the use of HS(CH2)3SH/
BF3�Et2O;23 and (b) treatment of 7 with Al/Hg in a THF/water mix-
ture, followed by treatment of the crude reaction product with
NaHCO3/MeI.24 This procedure gave 3 in a total yield of 52%. From
a preparative point of view, and compared to the reference method
(i), this procedure gave reproducible results and avoided the diffi-
cult separation of 3 from the reaction mixture.

Next, the reaction of 3 with (2,4-dimethoxypyrimidin-5-yl)lith-
ium (4a) was examined (Scheme 3). Formation of 4a from 8 or 5-
iodo-2,4-dimethoxypyrimidine by the action of n-BuLi3b,c,17a,25 or
t-BuLi,17g has been reported. In light of the reports on the addition
of n-BuLi to ketonitrones26 (less active acceptors than aldonitro-
nes), we decided to use t-BuLi to form 4a. In contrast to n-BuLi,
t-BuLi did not undergo the addition under the reported condi-
tions.16a Our procedure involved: treatment of 8 (1 equiv) with t-
BuLi [1.2 equiv, variant (ia); or 2 equiv, variant (ib)] at �78 �C;
(ii) addition of 3 at �78 �C and stirring the reaction mixture at
room temperature for 3 h, followed by removal of the volatiles;
and (iii) treatment of the residue with Cu(OAc)2/NH3 (aq) at room
temperature.27 Variant (a) of this procedure, i.e. when 8 was trea-
ted with 1.2 equiv of t-BuLi in order to produce 4a, gave 2,20-bin-
itrone 9 (34%) and 10 (71%). Variant (b), i.e. when 8 was reacted
with 2 equiv of t-BuLi, afforded the desired compound 11 (17%)
accompanied by 9 (39%) and 10 (70%).28 The starting compound
3 was not recovered from the reaction mixtures. These results sug-
gest that, in both variants of this reaction sequence, dimerisation of
3 predominated over the addition of 4a to 3. Presumably, the
dimerisation was initiated by deprotonation of 3 at the 2 position
by t-BuLi or 4a (Scheme 3c). Addition of the resulting 3-Li to 3, fol-
lowed by hydrolysis of 9-Li and the subsequent oxidation fur-
nished 9. Dimer 9 was also obtained (31%) by the treatment of 3
(2 equiv) with t-BuLi (1 equiv) under the same conditions. In a sep-
arate experiment, when the reaction was quenched with wet Et2O
at �50 �C, prior to the oxidation step, TLC (CHCl3/acetone, 85/15, v/
v) showed the presence of both 3 and 9 in the reaction mixture; the
mixture was not separated, and the ratio of 3/9 was not deter-
mined. These findings suggest that the reaction temperature was
not a decisive factor in the formation of 9. Such dimerisation of
1-pyrroline 1-oxides upon treatment with NaH (liquid NH3), n-BuLi
(�70 �C) or LDA (�70 �C) has been reported.29 The literature re-
vealed that the high reactivity of cyclic aldonitrones towards meta-
lation at the nitrone carbon atom is a consequence of their fixed
(E)-configuration. Stabilization of the organolithium carbanion
(such as 3-Li) by intramolecular coordination of lithium with the
nitrone oxygen is postulated as a factor facilitating the metala-
tion.30 To the best our knowledge, competition between addition
of an ‘‘external’’ nucleophile to an aldonitrone and dimerisation
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of this aldonitrone under the reaction conditions, such as that ob-
served in the present studies, has not been discussed. Moreover,
the same phenomenon has not been observed in the heteroaryla-
tion of 1-pyrroline 1-oxide-derived aldonitrones with 3-lithiopyri-
dine, 2-lithiothiazole, or 2-lithiofuran,16 although the reaction
mixtures from some of these reactions were kept at room temper-
ature prior to their work-up.16c

Since the previously obtained yield of 11 was not acceptable,
the reaction of 3 with the organomagnesium reagent 4b was
performed (Scheme 4a). Derivative 4b was prepared in THF from
8 and Mg in the presence of (CH2)2Br2 under reflux.31 An 8/Mg/
(CH2)2Br2 molar ratio of 1/3/1.5 was required for the efficient
conversion of 8 into 4b.32 The solution of 4b was cooled to
�10 �C and compound 3 was added. Then, the reaction mixture
was stirred at room temperature for 2 h. Oxidation of the crude
reaction product with Cu(OAc)2/NH3 (aq) was completed under
the previously described conditions to afford 11 (36%) and 10
(39%); starting material 3 was not recovered.33 The moderate
yield of 11 could be explained in terms of steric effects on the
addition of bulky 4b to 3. This assumption seems to be sup-
ported by the fact that the same reaction sequence with the
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use of 3 and (4-methoxyphenyl)magnesium bromide 13, a less
hindered organomagnesium agent than 4b, gave 14 in 64% yield
(Scheme 4b).34 Finally, 11 was transformed into 1 (54%,
Scheme 4c)35 or 2 (54%, Scheme 4d)36 by treatment with NaI/
AcOH at 70 �C, or with AcOH at 80 �C, respectively.

In summary, compounds 1 and 2, W-uridine aza0-analogues
with 5,5-bis(hydroxymethyl)-1-pyrrolin-2-yl 1-oxide as the gly-
cone mimic, were readily obtained from the O,O0-cyclohexylid-
ene-protected 5,5-bis(hydroxymethyl)-1-pyrroline 1-oxide (3)
and (2,4-dimethoxypyrimidin-5-yl)magnesium bromide (4b) in
three steps. The efficiency of the preparation of both 1 and 2 via
the addition of (2,4-dimethoxypyrimidin-5-yl)lithium (4a) to 3
was modest, mainly due to competition between the addition of
4a to 3 and the dimerisation of 3. The presented approach can be
considered as complementary to that based on the addition of
hydroxylamines to carbonyl compounds. Our studies showed
that it could be useful for the synthesis of keto-nitrones with the
uracil-5-yl residue at the nitrone carbon atom. Further studies on
the synthesis and biological properties of nucleoside analogues
with a nitrone glycone, including examination of their ability to
trap free radicals, are in progress.
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