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ON T H E  A D J O I N T  GROUP OF A FINITE NILPOTENT p-ALGEBRA 

B. A m b e r g  and  L. S. K a z a r i n  UDC 512.554.31 

The structure of the adjoint group R ~ of a 6nite nilpotent p-algebra R is considered under suitable 
additional conditions. For instance, the cases where R contains a large power subalgebra or has dimension 
at most 5, or when R ~ has small Priifer rank, are studied. 

1. I n t r o d u c t i o n  

An associative algebra over the Galois field GF(p) for some prime p is called a p-algebra. Nilpotent 
p-algebras have been studied in several papers (see, for example, [15, 20]). A nilpotent algebra R forms a 
group under the "circle" operation x o y = xy § x § y for every two elements x and y in R. This group is 
called the adjoint or circle group of R and is denoted by R ~ It is well known tha t  the adjoint group of a 
nilpotent p-algebra is a p-group (see, for example, [3]). This raises the question of which finite p-groups occur 
as the adjoint group of some (finite)nilpotent p-algebra, 

It is clear that  every elementary abelian p-group is the adjoint group of the corresponding null algebra. 
On the other  hand, for example, t h e  group Z~ can only be the adjoint group of some nilpotent p-algebra 
ff p = 2. In general, there will be many nilpotent p-algebras with isomorphic (nilpotent) adjoint groups. 
For example, it is observed in [15, Chapter V] that there are at least 100,000 uilpotent rings and more than 
35,000 uilpotent 2-algebras of order 26, but only 267 groups of order 26. 

In the following, we classify certain finite nilpotent p-algebras under additional restrictions. In Sec. 2, 
nilpotent p-algebras with large power subalgebras are studied. The latter correspond to cyclic subgroups in 
groups and algebras with large uilpotency class. 

In Sec. 3, we study nilpotent p-algebras whose adjoint groups have small PrEfer rank. It is, for instance, 
shown tha t  a Miller-Moreno ~group  occurs as the adjoint group of some nilpotent p-algebra only when the 
order of this group is extremely small. Also, it is proved that the adjoint group of a nilpotent p-algebra 
with p > 2 has at least 3 generators provided the dimension of the Corresponding algebra is at least 4 (see 
Theorem 3.4). 

In Sec. 4, the adjoint group of a nilpotent p-algebra with dimension at most 5 is investigated. In [21], 
the adjoint groups of nilpotent p-rings for a prime number p > 2 were determined by relatively complicated 
methods. 

Finally, in Sec. 5, we discuss some constructions that  are useful to prove that  some particular groups 
occur as the adjoint group of some p-algebra. 

The notat ion is standard (see [3,15]). With few exceptions all groups and algebras are finite. 

A c k n o w l e d g m e n t .  The second author would like to thank the Deutsche Forschungsgemeinschaft (DFG) 
and the RFFI  for financial support, and the Department of Mathematics of the University of Mainz for its 
excellent hospitality during the preparation of this paper. 

2. N i l p o t e n t  p-Algebras  w i t h  Large  P o w e r  Suba lgeb ra s  

An algebra R = ((a)) over the field F is said to be a power algebra if there exists an element a E R such 
that every element of R can be expressed as f (a)  for some polynomial f E Fix]. The least positive integer 
m such tha t  a m-i ~ 0 = a m i s  c a l l e d  the nillity (index) u(a) = m. Here u(a) = dim(R) + 1 = n(R) + 1, 
where n(R)  is the nilpotency class of R. The nillity u(R) of R is the maximum of all ~(a), where a runs 
through the elements of R. Obviously, u(R) < n(R) + 1 _< dim(R) + 1. The subalgebra of R generated by the 
elements xi,  x2 , . . .  ,x8 will be denoted by ( (x i ,x2, . . .  ,xs)), whereas the subspace of R generated by these 
elements is (xi, x2, . . .  , xs). Multiplication in the algebra R will be denoted by -, while multiplication in its 
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adjoint  g roup  R ~ by o. T h e  k th  power of an element x 6 R ~ is x (k), and the  k th  power  o f  x in R is x k. No te  
tha t  if  k = p m  for some posit ive integer m,  where p is t he  character is t ic  of  the  g r o u n d  field F ,  then we have 
x a = x (k). T h e  a~nihilator of  the  subset S of R is Ann(S)  = {r E RIrs  = sr = 0 for a n y  s E S}. 

T h e  s t ruc ture  of the  adjoint  group of the  ni lpotent  power  p-algebra R = ({a)) can  easily be described. 
Assume t h a t  dim(R) = n, i.e., a "+1 = 0 # a". Then  u(a)  = n + 1 and the  rank  o f  t h e  adjoint group of  R 
is r ( R  ~ = r = n - In~P] (see [2]). For a power p-algebra  R,  define a ma t r ix  M ( R )  = (c~#) of size I • r ,  
where l = 1 + [log~ n] and r is as above. The  elements ~ n ,  ~ n , - - .  , a u  of  the  first row are  integers be tween 
n and n - [n/p] + 1, namely cql = n and al~+l = a l i  - 1 for i = 1, 2 , . . .  , l - 1. T h e  e lements  in each co lnmn 
are as follows: if c~11 is the first element in the j t h  column,  then  we pu t  a2j = (~lj/P if p divides a l i  and  
a2i = 0 otherwise. The elements a~i are defined induct ively by  ek+~j = aa~/p if p divides  a ~  and 0~k+11 : 0 
otherwise for each k = 1, 2 , . . .  , I. 

B y  way  of  illustration, consider the following example:  R = (<a)), n = dim R = 28, p = 3. T h e n  
r = 28 - [28/3] = 19 and I = [log 3 28] + 1 = 4. Hence 

2 ) 
�9 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T h e  m a t r i x  M ( R )  is of t ype  (ml,  m 2 , . . .  , ml) if it has m l  columns with exac t ly  1 nonzero element,  m2 
l 

colllrnn~ wi th  2 nonzero elements, . . , ,  mt column.q with l nonzero  elements. Note  t h a t  ~ imi = n. Thus ,  in 
S=l  

above example  M ( R )  is of t ype  (13,4,1,1) and 1- 13 + 2-  4 + 3 . 1  + 4 . 1  = 28. 

T h e o r e m  2.1.  Let R = ((a)) be a nilpotent powerp-algebra of dimension n whose matr ix  M ( R )  is of  type 
( m l , m 2 , - . .  ,mr) .  Then the adjoint group of R is isomorphic to a group 

G = Zp TM x Z f  TM x ... x Z / n ' .  

P r o o f .  I t  follows from the  description of M ( R )  tha t  1. rnl + 2.  m2 + . . .  + I.  rnt = n. Indeed,  we may  define 
an equivalence relation on the  set of elements {1, 2 , . . .  , n}  as follows: x ~ y if y -- xp  t or x = yp~ for some 
nonnegat ive  integer t. Since n <_ pt, there are at  most l e lements  in each equivalence class. Moreover, these  
classes have at  most one representat ive in the set {n, n - 1 , . . .  , n - r + 1}. Associa te  with each column j 
a genera tor  yj = a kj of a cyclic subgroup Cj in R ~ where kj is the  only element  in the  j t h  column of  the  
mat r ix  M ( R )  tha t  is coprime to  p. For instance, in the  above example Yl = a 2s, Y2 = a, Y3 = a 2 6 ,  . . . ,  

Yn = a2, - - .  , and so on. T h e  subgroup Cj = (a k~) of  R ~ contains t h e  elements v ---- ak~,vP,... ,v p~, where  
alj  = pSkj (s = s(j))  is the  first element in this column. By  construction,  (~ljP > n for each 1 _< j _< r .  
Let  Ul -- a ~, u2 = a ~-1, . . . ,  ur = a ~-r+l.  The  elements u l ,  u 2 , . . . ,  ur are l inear ly  independent  in R and  
if w 6 R satisfies w p = 0, t hen  w = Alul + A2u2 + . . .  + A~u~ (where As E G F ( p ) ,  i <_ r) is a l inear  
combinat ion  of these elements. Hence the subalgebra U = ((ul ,  u 2 , . . .  , u~)) has an  e lementary  abel ian p- 
group o f  r ank  r as its adjoint  group, and is obviously an  ideal of R. Let  [/1 --- ((u~)),  Ui = (<Ui-~, us)) 
for each i = 2, 3 , . . . ,  r .  T h e n  U1 < [72 < . . .  < U~ = U is a chain of subalgebras  of  U. Clearly, Us is 
also an i d e a / o f  R for each i < r.  Define inductively the  subgroups Hj of G -- R ~ as follows: /-/1 = C1, 

t 

Hj = <Cs[i <_ j ) .  The multiplication law in R ~ and the  re la t ion  x(") = ~.. (~)x i show t h a t  121(Hi) -- Uj and  
S=l 

Hi-1 N Cj  -- Uj-1 n (uj) = 1. Hence Hj  = Hj_I  x Cj. An easy  induct ion completes  t h e  proof,  and so H~ ---- G 
since IGI =pn = pm1+2m2+...+,m, = IC~l X IV21 x ... x IC.]. [] 

The following theorem classifies finite nilpotent p-algebras with large power algebras. 

T h e o r e m  2.2.  Let R be a nilpotent p-algebra of dimension n that contains a power  subalgebra L = ( (a) ) 
of dimension n - 1 .  Then R = ((a,b)) with a ~ = 0 = ab and b a = O. Let  the integer k >_ 0 satisfy 
the conditions pain - 1, pk+l /~n - 1. The adjoint group L ~ of L contains subgroups H and C such that 
C ~- Zpk+l, L ~ ~- H x C, and either 
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(i) R is commuta t i ve ,  b 2 = Aa "-1 ,  A �9 G F ( p ) ,  R ~ ~-- L ~ x Zp, or  p = 2, n - 0 (mod 2) and  R ~ ~_ H • Z4, 
o r  

(ii) R is n o n c o m m u t a t i v e ,  ba = #a  '~-1, b 2 = Aa '~-1, A E G F ( p ) ,  # E G F ( p ) * ,  and  one o f  the fo l lowing  holds: 
(a) R ~ ~- ( H  • C)  >4 (b) wi th  (a, b) = z �9 C N Z ( R ~  [z[ = Ibl = p;  
(b) p = 2, R ~ _~ <b) >~ H ,  where (b) ~- Z4, n - -  0 (mod 2) and (a, b) = b2; 

(c) p = 2 ,  n = 3 ,  a n d R  ~  

This implies the following result of Gorlov (see [12]). 

C o r o l l a r y  2.1.  I f  R is a f in i t e  niIpotent p-a lgebra  w h o s e  adjoint  group is metacyc l ic ,  t hen  R r is e i ther  an 
e l emen tary  abelian p-group  o f  order at m o s t  p2, o r  p = 3 and R ~ ~_ Z9 x Z3, or p = 2 and  R ~ is one of  the 

fo l lowing  groups: Z4,  Z2 X Z4 ,  Z4 X Z4, Z 2 X ZS,  Z 4 ~ Z4,  D8 ,  Qs-  

The  following 1emma considers a more general  s i tuat ion.  

L e m m a  2.1.  Let  R be a n i lpotent  algebra o v e r  an  arbi trary  f ie ld F ,  contain ing a p o w e r  subalgebra L o f  
codimension 1. Then R = <<a,b>> for some b �9 R \ L and L = (<a>> such that the following holds: ab = 
O, ba = Aa ~- t ,  b 2 = #a  ~-1, where  A, # �9 F and  v = v ( a )  = v ( R ) ,  n ( R )  = d i m  L = v ( R )  - 1. 

P r o o f .  Let  
b'--I 

ab = ~ A~a i 
i=1 

t ha t  z = b -  

= v(a)  for L = {(a)}, b �9 R \ L. T h e n  R = {(a, b}) and  ab �9 L since L is an ideal. Hence 
~'--1 

where Ai �9 F ,  i = I, 2 , . . .  , v -  1. T h e n  a ( b -  ~_, Aia ~'-1) = 0. Assume th a t  At r 0. It follows 
i=l  

u--1 v - I  
a/-1 = - A 1  + b - y~ A~a/-t �9 R -4- 1 . F  and is invertible. Therefore  a z  = 0 implies a = 0, 

i= l  i=2 
I]--1 

which is not  the case. Now-A1 - 0, z = ~ A/a i-1 satisfies az  = O. Hence we may assume tha t  ab = O. Since 
/=2 

v--I v - I  
L is an ideal, also b 2 = ~ Dja j for some Dr , . .  : ,  D,~-t E F .  But  b2a = ab 2 = 0 and so ~ / ~ s a  j+l = 0, which 

j=t  5=1 
implies Dt = ~2 . . . . .  13~_2 = O. Hence b 2 = # a  ~-1 for some # E F .  Since ab = 0 a n d  ba 6 L,  we have 

v--t v--t �9 
ba = Y~ 7 ja  j and  aba = O. This  forces Y~ 7ja  j+l  = 0 and  71 = 72 . . . . .  % - 2  = O, so tha t  ba = Aa ~-1 for 

j=l 5=1 
some A E F .  It is clear t h a t  n ( R )  > n ( L )  = v(L)  - 1 = d i m  L. The  element a ~-1 generates an  ideal J of R 
a n d  R / J  = {<a + J, b + J>} is a commutat ive  algebra,  which is a direct sum of L / J  and a subalgebra ((b + J}) 
of  dimension 1. Hence the  produc t  of any v - 1 e lements  in R / J  is 0 and  n ( R )  = v ( L )  - 1 = v ( R )  - 1. The 
lemma is proved. [] 

P r o o f  o f  T h e o r e m  2.2.  Let  R be a ni lpotent  p -a lgebra  of dimension n tha t  contains a power subalgebra 
L = {(a)} of dimension n - 1. Let b �9 R \ L as in L e m m a  2.1. Th en  ab = 0, ba = Aa "-1,  and b 2 = #a  "-1. 
Since ab = 0, we have b 3 = bb 2 = O. Thus, if p > 3 the re  exists an element  b �9 R ~ \ L ~ such tha t  b p = 0 in 
R ~ In this case, R ~ is a semidirect product  of  a n o r m a l  subgroup L ~ and  a subgroup isomorphic to  Zp. If R 
is commutat ive,  then R ~ is even a direct p roduc t  o f  these  groups. 

Let  p = 2 and assume tha t  R is commutat ive .  T h e n  ff n - 1 (rood 2), we m ay  take u =- # a  (~-1)/2 and 
v = u + b. It  is easy to  see t h a t  v 2 = u 2 + ub + bu + b 2 = u 2 + b 2 = O. Since v ~ L, there  is an involution in 
R ~ - L  ~ and R ~ _ L ~ x Z2 as above. Hence we m a y  assume  tha t  n -- 0 (rood 2). It  was proved in Theorem 2.1 
t ha t  L ~ ~_ H x C with C = (a m-l} (recall t ha t  n - 1 is odd) ,  and we m a y  have tha t  R ~ ~_ H x Za. We show 
tha t  this case really occurs. Let  N = L $ S, where  S is an algebra wi th  generator  s such tha t  s 2 # 0 = s 3. 
In this case S ~ _~ Z4. T h e  multiplication in N is de te rmined  by the  rule sl  = l s  = 0 for  each l �9 L and 
multiplications inside the  subalgebras L and S. T h e  subalgebra J of N of  the form {(s 2 + a'~-l>} is an  ideal 
of  dimension 1 of N since J C Ann(N) .  Then  t he  adjoin t  group of  the  quotient  a lgebra N / J  is isomorphic 
to  H • Z4. 

Now let R be noncommntat ive .  Since ab = 0 a n d  ba �9 L, we have a(ba) = 0 and  hence ba = Aa '~-1 �9 
Ann(R)  with A �9 G F ( p ) * .  I t  follows that  [a, b] = ab - ba = - A a  "-1.  This  implies the  required relations for 
p > 2 .  
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Let p -- 2. If  there is an  involution in R ~ ~ L ~ then  we are in a case discussed above. Hence we m a y  
assume tha t  there are no involutions in R ~ \ L ~ Then b 2 = a n-1 and  ba = a n-1. If n - 1 - 0 (rood 2) and  
n > 3, then  there is an  e lement  u = a ('~-1)/2 s u c h  t ha t  

(u + b) ~ = ub + bu + u 2 + b 2 = a (n- l )~2 § b (~-1)/~. 

Since aba = 0 in each case, i t  follows that  (u + b) 2 = 0 and u § b 6 R \ L. Thus, either n -- 0 (rood 2) or 
n -- 3. The  last case leads to  a quaternion group Qs -~ R ~ Now we will show tha t  there exists an  algebra R 
of  dimension n > 3 such t h a t  R ~ _ (b) ~ H,  where H x Z2 = L ~ -- ((a)> ~ 

Note first tha t  an  a lgebra  of  the form (ii)(a) really exists for each prime p. This can be seen by  direct 
calculations, using a fai thful  representation of this  algebra by (n + 1) x (n + 1)-matrices over GF(p) ) .  The  
adjoint  group of this a lgebra  T for p = 2 can be expressed in the  form T = (H  x (z>) >4 (x), where 
<(a)) ~ = H x  (z>, z = a '~-1, x 2 = 1, and (a ,x)  = z (x 2 - -  O i n T ) .  Consider an a l g e b r a S  = ((s)> wi th  
s 2 ~ 0 = s 3 whose adjoint  group is isomorphic to Z4 and N -~ T $ S, a direct sum of two algebras T and  
S. Then  ts = st -= 0 for each t e T. Let M = <(a,x+s>>. It  is obvious tha t  M ~ = (H  x (z)) >~ ( ( s + x ) )  ~ 
with  relations [a, s + x] = z, a2(s + x) = (s + x)a  2 = O. Clearly J = (((s + x) 2 + a~-l>) is an ideal of M,  and  
we obta in  an n-dimensional algebra R = M / J  with  a power subalgebra (L + J ) / J  of dimension n - 1. The  
relat ion (x + s) 2 = s 2 implies t h a t  (x + s) 2 + J = s 2 + J = a ~-1 + J .  Hence the required algebra exists. Thus,  
Theorem 2.2 is proved. 

C o r o l l a r y  2.2. Let R be a nilpotent p-algebra of dimension n >_ p that contains a power subalgebra JL of 
codimension 1. Then r ( R  ~ >_ (p - 1 ) / p d i m R  and n(R)  = n - 1. 

P r o o f .  The second assert ion is clear. For every commutat ive algebra A, the subset T(A)  = {x E AIx  p = 0} 
is a subalgebra of A. Since d i m L  < p/(p - 1) d i m T ( L )  for a power algebra L (see Theorem 2.1), we are 
done if we are able to prove t h a t  T(R) is a commutat ive  subalgebra of R and d imT(R)  > d i m T ( L ) .  By  
the  previous theorem, ((a 2, a 3 , . . .  , a ~-t, b)) is a commutat ive subalgebra of R for each b E R - L. Hence 
if  a ~ T (R) ,  then T(R)  is a subalgebra. By  the  previous theorem, there exists an element in T ( R )  - T ( L )  
provided tha t  p > 2. If  a p ~ 0, then the corollary is proved. 

I f p  > 2 a n d a  p = 0, t h e n  d imT(R)  > d i m L  = p - 1  a n d n  = p  = direR. Assume t h a t p  = 2. If  
a 6 T(R) ,  then a 2 = 0 and  d i r e r  = 2. In this  case, 2 d i m T ( R )  _> di reR.  If n = 3, the corollary is also 
t rue.  Hence we may assume t h a t  dim R = n > 3. If n - 0 (mod 2), t hen  R ~ - L ~ contains an involution by 
Theorem 2.2. If n - 1 (rood 2), then d imT(L)  -- (n - 1)/2 + 1 and  2 r (R  ~ >_ 2 d imT(L)  _ n + 1 > d i r eR .  
This  concludes the proof of  the  corollary. [] 

The  assertion r (R  ~ >_ ( p - 1 ) / p d i m  R, which is equivalent to a well-known conjecture of Eggert  (see [10]) 
in the  commutative case, need  not  be true in general by [2]. Consider an algebra R whose adjoint  group 
is isomorphic to a nonabel ian  group of order p3 and of exponent p. Then r (R  ~ = 2, but  the inequal i ty  
2p/(p  - 1) >_ 3 holds only  if  p < 5. 

C o r o l l a r y  2.3. Let R be a commutative nilpotent p-algebra whose adjoint group has rank at most p. I f  p = 2, 
then d i r e r  < 4. I f  p > 2, then direR <_ p § 1. Equality holds if  there exists an element of nillity p + 1 or 
p + 2. I f p  = 3 and r ( R  ~ = 2, then dim R = 3. In all other cases with r = r (R  ~ < p we have d i reR  -= r. 

P r o o f .  Let  p = 2. Then  t h e  adjoint group of  R is metacyclic and  the  s tatement  is true by Corol lary 2.2. 
Hence p >_ 3. If  v(R) < p, t h e n  R ~ is elementary abelian and dim R = r ( R  ~ < p. Hence we may  assume t h a t  
there exists an element a E R such that  v(a) = v >_ p §  I f v  > p+3,  t hen  r (R  ~ > (p-1) /p(p+2)  = p §  
and r ( R  ~ > p + 1. Assume t h a t  R # ((a)) and  d i r e r  > p + 1. Then  there exists a subalgebra L > ((a)> 
wi th  d i m L  = dim((a>> § 1 _> p + 2 .  By Theorem 2.2 we have r ( R  ~ > p +  1. Therefore we m a y  assume 
fur ther  t ha t  v = p + 1. If  d im  R >_ p + 2, then  there  exist subalgebras L and S such tha t  <<a)) C L C S wi th  
d i m L  = dim <(a)) + 1 and  dim S = d imL § 1. B y  Theorem 2.2 it follows tha t  r ( R  ~ > p. If  there exists an 
element b E S - L such t h a t  b ~ -- 0, then r ( R  ~ > p + 1. Hence for each b 6 S - L we have b p ~ 0. I f  a p 
a n d  b p are linearly independent ,  then p + 2 = dim S > 2p by Eggert 's  theorem [10]. This implies t h a t  p < 2, 
which is impossible. Hence b p ---- Aa ~ for some A E GF(p).  It is clear t h a t  b - Aa E S - L and (b - Aa) p = 0, 
a contradiction. [] 
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T h e o r e m  2.3. Let R be a nilpotent algebra of dimension at least 4 over an arbitrary field F .  I f  the nilpotency 
class is n(R) >_ dim R - 1, then v(R) > n(R) + 1. Hence R contains a power subalgebra of  codimension <_1. 

P r o o f .  If n(R) = direR, then R is a power algebra by [15, Lemma 2.3.1].. Hence assume that n(R) = 
d i r e r  - 1. Let direR = 4. Then by [15, Theorem 6.2.1], n(R) = 3 implies ~(R) = 4. Thus for algebras R 
with dim R = 4 Theorem 2.3 is true. Proceeding by induction, we may assume that this theorem is also true 
for any algebra S with 3 < dim S < dim R, satisfying the hypotheses of the theorem. Let  J be an ideal of 
R with dimension 1. If n ( R / J )  = n(R), then n ( R / J )  = direR~J,  so that  R / J  is a power algebra by the 
above considerations. In this case, R has a power subalgebra of codimension 1 and we are done. Therefore, 
we may assume that n(R /J )  = n(R) - 1..Since dim R / J  = d i r e r  - 1, we have d i m R / J  - n ( R / J )  = 1 and 
by induction R / J  has a power subalgebra L / J  of codimension 1. The full preimage L in R of L / J  is either a 
power algebra or is a direct sum L = S ~ J  of a power algebra S and an ideal J.  Since d i m s  >_ 2, 0 r L 2 _< S 
contains an ideal I of R with dimension 1. Note that L is not a power subalgebra of R because otherwise 
we are done. Therefore, 0 ~ I is an ideal of R with trivial intersection with J and I + J C Ann(R). The 
algebra R / I  also has nilpotency class at most n(R) - 1 and since R <_ R / J  x R / I ,  n(R)  <_ n(R) - 1. This 
contradiction proves the theorem. [] 

The analogs of Theorem 2.3 for commutative matrix algebras over the field of complex numbers can be  
found in [20], In general, there is no bound for ~(R) in terms of n(R). It is possible to construct examples 
of a family of algebras P~, i E l~t, where v(P~) is a constant and n(Ri) > i for any i E N. 

3. N i l p o t e n t  p - A l g e b r a s  w i th  Ad jo in t  G r o u p s  o f  Smal l  R a n k s  

Recall that  a group G has finite Priifer rank r = r(G) if every finitely generated subgroup of G can be 
generated by r elements and r is minimal with this property. In this section, we investigate the case where 
the abelian subgroups of a group G that is the adjoint group of some nilpotent p-algebra have small rank. If 
G is a group of rank 1 or a metacyclic group, the corresponding results were obtained by  Ault and Watters 
in [4] and by Gorlov [12]. The following theorem generalizes results mentioned above. 

T h e o r e m  3.1. Let R be a nilpotent noncommutative finite 2-algebra whose adjoint group G has no elemen- 
tary abelian subgroups of rank 3. I f  G is not metacyclic, then one of the following holds: 

(i) G -~ Qs x Qs, where G' ~" Z2 x Z2 or G ~- Qs * Qs, a central product, or G is isomorphic to a subgroup 
of these groups; 

(ii) G ~- (a, b, c) with the relations a a = b a = c a = 1; a 2 = C 2,  (a, c) ---- b 2, (b, c) = c 2, (a, b) = 1; 
(iii) G is isomorphic to a Sytow 2-subgroup of a group of type U3(4): G = (a,b,c,d) with relations a a = b a = 

c a = d  a - - 1 , d  2 = a  2o52 , c  2 = b  2 , ( a , c ) - - a  2, (a, d) = (b, c) = a 2o52 , ( b , d ) - - b  2, (a, b) -- (c, d) = l. 

P r o o f .  Let A be a maximal abelian subgroup of the group G = R ~ Then A is also a subalgebra of R. By 
Corollary 2.1 it follows that A - Zs • Z2, Za x Za, Za x Z2, Za, Z2 • Z2, or Z2. Since G is not metacyclic, 
the last 3 possibilities do not occur. If A _ Zs • Z2, then A is a power subalgebra of R and so is a power 
subalgebra of some subalgebra of R with dimension 5 since R is not commutative. By Theorem 2.2, G has 
an abelian subgroup of rank 3. Hence we may assume that G has no elements of order 8. Assume that A 
is a maximal normal abelian subgroup of G with rank 2. By the above discussion, A ~_ Za x Z2 or Za x Za 
and G/A  ~_ Auta(A).  Consider the centralizer H in G of a subgroup E = ~I(A).  It is easy to see that  
IG : H I < 2. Note that H has exactly 3 involutions. Assume that g E G \ A. Then g2 is an involution in H 
and hence g2 E E. Now it is easy to see that G / E  is an elementary abelian group. 

Consider first the case A ~_ Za x Z2. There are only four elements of order 4 in A and G permutes 
them. If a E A \ E and a x = a for some x E H \ A, then also x E Ca(A). In this case (x, A) is a maximal 
abelian normal subgroup of G, contradicting the choice of A. We may assume further tha t  H / A  acts fixed- 
point-freely on the elements in A \ E and hence is a group of order at most 4. Assume that  H contains a 
subgroup K = (a))4 (b) with la I = Ibl = 4 and (a, b) = a 2. The subgroup K is normal in G, since it contains 
E > G'. By [22, Theorem B], we have G ~ H.  Let g E G \ H.  Then g permutes the involutions in K and 
has at least one orbit of size 2 on E #. However, this is not the case because there are no square roots of the 
element a 2 o b 2 in K and g fixes a 2, which is the only nontrivial commutator in K.  This is a contradiction. 
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If h E H \ A, then (a, h) is a subgroup of G of order at most 16, which is nonabelian and not of the form 
(x))~ (t) with x 4 = t a = 1. It follows that  in this case (a, h) -- Qs. If y E g \ A and (a, y) -~ Qs, then 
(h o y, a) = 1, which gives the unique possibility I H : A I = 2 (recall that  H acts fixed-point-freely on A \ E).  
Let H -- (a, b) • (c), where (a, b) ~- Qs, Ic] -- 2 (see the above discussion). If G -- H ,  the theorem is proved. 
Assume that  G ~ H and d E G \ H. Since d permutes the involutions in H nontrivially and a 2d = a 2, we 
havec  d = a  2 o c .  S i n c e A =  (a) • (c) is n o r m a l i n  G, a d = a o z f o r s o m e z E E .  S inced  2 E A ,  w e h a v e  
a = a d2 -- a d 0 z d = a o z o z d and z = z d. It follows that either a d = a or a d = a (-1). For the same reason 
b d = b or b (-~). This implies that G' C_ (a, b), so that  ]G'] = 2 and d 2 E (a2). Therefore G/G'  is elementary 
abelian. It follows from [13, Satz II.13.7] tha t  G is a central product  Ds * Qs or Ds * Ds. The second case 
cannot occur since this group contains an elementary abelian subgroup of order 8 (see [13, Satz III,13.8]). 
This implies tha t  G - Qs * Ds - Qs * Qs, and so the theorem is proved in the case ]A I = 8. 

Now we will consider the case A - Za • Z4 -- (a) • (b). Prove that  H = Co(E)  = G. If g E G \ H ,  then 
g induces an automorphism of order 2 of A and acts nontrivially on E.  Without loss of generality, we may 
assume that  g(-1) o a 2 o g = b 2 and g(-1) o b 2 o g = a 2. Then g(-1) o a o g = b o e with e E E. Hence 

( g o a ) 2 =  g o a o  g o a =  g2 o g(-1) o a o  g o a =  g2 o e o a 2  ob. 

Since g2 E E ,  this implies (g o a) a = b 2 ~ 1 and g o a has order 8, a contradiction. Now we may apply a result 
of Ustyuzhaninov [22, Theorem S] (see also [16]), and the theorem is proved. [] 

It will be proved in Sec. 4 that all groups in Theorem 3.1 occur as adjoint groups of some nilpotent 
2-algebras. 

C o r o l l a r y  3.1. Let R be a nilpotent p-algebra with direR > 3 for  p > 2 and dim R > 6 for p = 2. Then the 
adjoint group R ~ contains an abelian subgroup of rank at least 3. 

T h e o r e m  3.2. Let R be a nilpotent p-algebra with p > 2 whose dimension is at least p(p § 1)/2. Then R ~ 
contains an elementary abelian p-subgroup of rank p. 

Proof .  Assume that there exists a nilpotent p-algebra of dimension at least p(p § 1)/2 whose adjoint group 
has no elementary abelian p-subgroups of rank p. If v(R) ~ p § 1, then R contains a power subalgebra L 
with dim L _> p. If there exists in R a power subalgebra of dimension n, then by [2, Lernma 5.1] it has a 
subalgebra with elementary abelian adjoint group of rank r >_ n(p - 1)/p. Hence if r < p, then we have 
n < p + 1 + 1/(p - 1). It follows that every power subalgebra of dimension p + 1 contains a subalgebra 
with an abelian adjoint group of rank p. Hence dim L = p. Since d i m R  >_ p(p + 1)/2 _> p § 1, there exists 
a subalgebra S of R which has dimension dim L § 1 and L C S. Since in the case p = 3 the theorem 
is obviously true, we may assume that p > 3, dim R __ 6, and by Theorem 2.2, S ~ contains an abelian 
subgroup of rank dimL. Thus, we obtain a contradiction. Hence we may assume that  v(R) _< p and so G is 
a group of exponent p. Assume that A is a maximal abelian normal subgroup of G. Let k = logp IAI. Since 
Co(A) = A,  it follows that G / A  C_ GLk(p) ~- Aut(A). Thus, the  order of G / A  is at most pk(k-1)/2. Now we 
have (k 2 § k ) / 2  = k(k - 1)/2 + k >_ dim R >_ p(p + 1)/2 and k _> p. This contradiction proves the theorem. [] 

It is easy to construct for p > 2 a p-algebra of dimension 2n + 1 that  has no subalgebras of dimension 
n -t- 2 with an elementary abelian adjoint group. To see this consider an extraspecial p-group of order p2,+1 
of exponent p and use a theorem of Kaloujnine [15]. 

A Miller-Moreno p-group is a nonabelian p-group all of whose proper subgroups are abelian (see [13]). 
The structure of such groups is well known and can be summarized as follows (see [13, II.7]). 

L e m m a  3.1. (i) Let G be a finite p-group. I f  G is a Mil ler-Moreno group, then G is isomorphic to one of 
the following groups: 
(a) G = (a))~ (b) with [a[ =pr~, ib I = p,~ = 1, and (a,b) = a p'~-I, m > l ,  n k l ;  
(b) G = ( (a) x (c) ) )4 (b) with lal =pro, ib I = p~, ]c I = p, m ,  n >_ 1, and (a, b) = c, (a, c) = (b, c) = 1; 
(c) G ~- Qs, a quaternion group of order 8; 

(hi) G is a Miller-Moreno p-group if  and only i f  d(G) = 2 and IG'I = p; 
(iii) G is a Miller-Moreno p-group if  and only i f  r  = Z ( G )  and IG : Z(G)I = p2. 
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The following theorem describes the MiUer-Moreno groups tha t  occur as adjoint groups of some n i lpoten t  
p-algebras. 

T h e o r e m  3.3. Let G be a MiUer-Moreno p-group that is the adjoint group of some finite nilpotent p-algebra. 
Then one of the following assertions holds: 

(i) G is a metacyclic 2-group of  order at most  16; 
(ii) G is isomorphic to a group of type (b) in L e m m a  3.1 with m < 2, n < 2, i.e., ]G] < 25 and exp(G)  <_ 4; 

(iii) G is a nonabelian p-group of order p3 and of exponent p. 

P r o o f .  First  let p > 2. T h e n  it follows from L e m m a  3.1 and Corollary 2.1 tha t  there axe no nonabel ian  
metacyclic p-groups that  are adjoint  groups of some nilpotent  p-algebra. Hence we may  assume tha t  G is a 
group of type  (b) of Lemma 3.1. This group has no elementary abelian subgroups of rank 4. Hence i f p  > 3, 
then  each maximal  subalgebra of  R (with R ~ = G) has dimension at most  p +  1 (see Corollary 2.3). However, 
r ( R  ~ > 3 for each p > 3 if ~(R) > p and by Corollary 2.3 we have ~(R) < p, i.e., G has exponent p. Hence G 
is a group of type  (iii). If p -- 3 and  G is not a group of exponent 3, then the maximal commutat ive subalgebra  
of R has dimension at most 4 a n d  so 4 < dim R _ 5. If  v(R) = 4 and dim R = 4 or v(R) = 5 and dim(R) = 5, 
then  Theorem 2.2 gives a contradiction.  Hence ~(R) = 4, dim R = 5. In this case, R ~ = G - (Z9 • Z3) )~ Z9. 
If  J i s a n  ideal of R of dimension 1, then R / J  has either a metacyclic adjoint group or a Miller-Moreno 
group of order 81. By Corollary 2.1 and the above discussion we obtain a contradiction. Hence p -- 2 and  
G = ((a) • (c)))~ (b) with [a I = 2"*, ]b I = 2 ~, ]c] = 2, and (a, b) = c e Z(G) .  By [2, Lemma 5.1], we have 
(v(R) - 1) < 2 r (R  ~ < 6. Hence ~(R) < 7 and  m, n ~ 3 in each case. 

Assume tha t  R is a m i ~ i m ~  counterexample to Theorem 3.3. If J is an ideal of dimension 1 of R ,  t hen  
the  adjoint group of R / J  is R ~  ~ (see, for example,  [21]). I f . jo  = (c) is a commutator  subgroup of  G, 
then  G/(C) is a metacyclic g r o u p  and by Corollary 2.1 we have IG/(c)] g 16. If, also, G/(c)  is a group of 
exponent 8, then  R / J  is a power algebra, hence R is commutative,  which is not the case. Therefore, if J~  is 
a commuta to r  subgroup of G, t hen  the theorem is true.  Thus we may assume that  J~ does not contain the  
commuta to r  subgroup of G. On the other hand,  the  adjoint group of R / J  is also a Miller-Moreno group. 
Hence we may  assume tha t  d im R < 6. Since ~(R) _< dim R with the equality only for algebras having a 
power subalgebra of codimension 1, by Theorem 2.2 we may  assume tha t  ~,(R) _< dim R -  1. Hence ~,(R) _< 5. 

Consider the  case m = 3 and  n = 1. Then dim R = 5 and since v(R) > 4, we obtain a contradiction. 
Hence we m a y  consider the case m = 3, n = 2, and  since G has an element of order 8 it can be assumed t h a t  
~(R) -- 5. Here G = ((a) • (c)))~ (b) _~ (Zs • Z2) )~ 7/~4 with a s = b 4 = c: -- 1, (a,b) = c E Z(G),  and a 4 ~ 0 

in R, b 4 = 0 in R. There axe jus t  two possibilities for the Jordan decomposition of R into cyclic subspaces 
corresponding to the action of  a as an operator on R: 

R = ((a)) @ (d) @ (b), 

wi th  dim(b) ---- dim(d) = 1 and  

ba = da = 0 ( , )  

R = ((a))  r (ba, b), ha: = 0 (**) 
with dim(b, ba) = 2. 

Consider first the case ( . ) .  Since every subalgebra of R is commutative and R -- ((a, b/), we may assume 
tha t  d E S, where S is a max ima l  subalgebra containing a. Hence da = ad = 0 and ba = 0 ~ ab. Since S is 
an ideal of R, we have 

b 2 -- Ala + h2a 2 + h3 a3 + h4a 4 + h0d, 

where hi E GF(2) ,  0 < i < 4. From b2a = ab 2 = 0 it  follows tha t  A1 = A2 = A3 = 0. Hence b 2 = A4a 4 -t- h0d. 
Since ab, a E S,  which is commutat ive ,  we have a2b -~ aba = 0 with ab = 131a +/32a 2 +/33a 3 +/34a a -t-/30d, 
where/3i  e GF ( 2 ) , 0  < i < 4. It follows that/31 =/32 =/33 = 0. Hence ab =/3a 4 +/30d, b 2 = Aa 4 + hod 
(A -- A4, fl ---- • ) .  Assume t h a t  flo = 0. Then ab =/3a  4 e Ann(R)  and ((a4)) = J is an ideal of R. Modulo 
J the  algebra R is commutat ive,  contradicting the s tructure of its adjoint group. Hence/3o = 1. If Ao - 0, 
then  b 2 E Ca, a 2, a 4) and b 2 ~ Aa 4 implies (b - Aa2) 2 = 0, which is not the  case. Hence ab =/3a a + d and 
b 2 -- Aa 4 + d. I t  follows tha t  d ---- ab + fla 4 and b 2 -= (A + fl)a 4 + ab, which implies b 3 = 0 and bd = O. Hence 

(/3a a +d)b  = (/3a 4 + d ) a  = O, z -= [a,b] e Ann(R).  
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Now R / ( ( z ) )  has a metacyclic adjoint group Zs • Z4, which is impossible by Corollary 2.1, Therefore, we 
may now consider the second case: 

R=((a))(9(b, ba), a s-=ba 2 = 0 ,  a 4 ~ 0 ,  b 4 - - 0 .  (**) 

Since ba E Ann((a)) and Ann((a)) + ((a)) ~ R, we have ba E S,  which is maximal in R. Now S has a basis 
{a, a 2, a 3, a 4, ba}. Since b 2 E S, we have 

b 2 = A l a + A 2 a  2+A3a 3 + A a a  a+Aoba,  A i E G F ( 2 ) ,  0 < i < 4 .  

Since b2a 2 = b(ba 2) = O, we have A1 = A2 = 0 and b 2 = A3a 3 + Aaa 4 + Aoba. Since b 4 = 0 and b2a = Aaa 4, it 
follows tha t  ba 2 = 0 = a2b, b 2 = aa 3 + t i c  4, + vba (a  = Aa, fl = )~, 7 = Ao) and b2a = aa 4. Since ab E S ,  we 
have 

a b = # l a + # 2 a  2+#3a 3 + # 4 a  4+#oba,  # ~ E G F ( 2 ) ,  0 < i < 4 .  

Using the relation aba = ba 2 - -  0, we obtain #1 = #2 = #3 = 0 and ab = #a 4 § #oba, where # = #4. If 
#0 ~ 0, then [a, b] = ab - ba = #a 4 e Ann(R)  and R/((a4))  is a commutative algebra, which is impossible. 
Hence #0 ---- 0, ab = #a 4, and b 2 = aa 3 + ~a 4 + vba. Since ab 2 = b2a, (ab)b = #a4b = O. However, b2a = aa  4. 
Therefore., a = 0. We have ab = #a 4, b2a = O, and b 2 = ~+Tba.  Since b2a = O, b 3 = 0 and a b - b a  = #ca+ha .  
It is easy t o  see that ba E Ann(R) and a 4 E :Ann(R). Hence z = [a, b] E Ann(R).  As before, this leads to  a 
contradiction. Thus this case is also impossible, and the theorem is proved. [] 

It is easy to show that  if a noncommutative nilpotent p-algebra R of finite dimension has two maximal  
commutat ive subalgebras, then R ~ - ((a> x (c>))4 (b> x A, where a p'~ . . . .  b pn c r 1, (a,b) c p ~ - ~ , a n d A  
is an abelian group or R ~ -- M x A, where M is a Mfller-Moreno group and A is an abelian group. Hence 
Theorem 3.3 shows that the case A ~ 1 occurs very rarely. Below we construct an algebra R that has two 
commutat ive maximal subalgebras and its adjoint group has prescribed Miller-Moreno factor M. 

The next theorem is perhaps surprising. 

T h e o r e m  3.4. Let R be a finite nilpotent p-algebra (p > 2) whose adjoint group has only two generators. 
Then ei ther R ~ is a metaeyclic group or R ~ is a nonabelian p-group of order p3 and of exponent p. In  each 
case, d im R <_ 3. 

P r o o f .  Consider the chain R D R 2 D R3. . .  D R k = O, where k - 1 is the nllpotency class of R. Since 
R has two generators, IR/R2I = p2. Since R 2 / R  3 is contained in the center of  R / R  3, the algebra R / R  3 is 
either commutative or the adjoint group (R /R3)  ~ is nflpotent of class 2. Consider a factor algebra R / R  ~+1 
such that  the algebra R / R  i is commutative and R / R  ~+1 is noncommutative. Without  loss of generality, we 
may assume that R I+1 = 0. Then R has two generators a, b that  are also generators of R ~ Since G = R ~ is 
a group with two generators a, b and (a, b) E Z (G) ,  we have G' - ((a, b)) and the group G/G'  is metacyclic.  
It follows that  the rank of G is at most 3. Consider first the case p > 3. By Corollary 2.3, dim A _< 3 for 
each maximal commutative subalgebra A of R. Hence the order of any maximal abelian subgroup of  G is 
bounded by  p3 and each nontrivial element of G is of order p. Since d(G) = 2 and G' C Z(G)  is elementary 
abelian, G is a Miller-Moreno group and by Theorem 3.3 dim R = 3. Assume that  p = 3 and ( R / I ~ )  ~ is 
not elementary abelian. This case can occur only when R / I ~  is a power algebra by [12], but  then R is a 
commutat ive algebra. Hence (R/Ri)~ is an elementary abelian p-group in each case and G is a Miller-Moreno 
group. By Theorem 3.3, dim R = 3 and i = 2. Now we may assume that R 3 ~ 0 = R a. Since dim R / R  3 = 3 
by the previous discussion, we have dim R 2 / R  3 = 1. By [15, Lemma 1.6.1], it follows that R 2 C Z ( R ) .  Then  
R 3 = 0, a contradiction. The theorem is proved. [] 

4. Nilpotent p-Algebras of Small  Dimension 

Nilpotent p-algebras of small dimension have been studied for a long time. A list of those of dimension 
4 was given by Allen [1] with corrections by Ghent [11]. The description of these algebras can be found in 
Kruse and Price ([15]) (see also Scorza [19]). 

It seems that so far no attempts have been made to determine the structure of the adjoint groups of 
these algebras. One of the dlt~culties is that similarly defined algebras can lead to adjoint groups with 
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different structure (depending on the characteristic of the field). For instance, the adjoint group of a p- 
algebra determined by the laws x 3 = 0 and ab = ba for all x,a,b E R can be isomorphic to Z4 (ff p = 2) or to 
Zp • Zp (if p > 2). A list of all p-algebras of dimension 5 is contained in the dissertation of Boyce [8], and a 
bibliography can be found in [15]. We will describe here all nonisomorphic finite p-groups that can occur as 
the adjoint group of some nilpotent p-algebra of dimension less than or equal to 5. In Theorem 4.3 we give a 
complete description of the groups of class 3 that  can occur as an adjoint group of some nilpotent p-algebra, 
indicating only for p = 3 the general properties of groups of class 2 that  occur as an adjoint group, because 
the complete description would long. It is interesting to compare this list with the list of groups of class 3 of 
order p5 that  can occur as an adjoint group of some nilpotent p-ring obtained by Tahara and Hirosi [21] for 
p > 2. Note that  for p = 2 we have been able to find all 2-groups of order 25 that occur as adjoint groups of 
some 2-algebras. 

T h e o r e m  4.1. Let G be the adjoint group of some nilpotent p-algebra R. I f  dim R = 3, then exactly one of 
the following holds: 

(i) G ~ Zp x Zp x Zp; 
(ii) G is a nonabelian p-group of exponent p and order p3; 

(iii) G ~ Z~ x Zp (p < 3); 
(iv) G ~- Ds or Qs (a dihedral or a quaternion group). 

P r o o f .  This is an easy consequence of the description of these algebras in [15, Theorem 2.3.6]. [] 

T h e o r e m  4.2. Let G be the adjoint group of some nilpotent p-algebra R. I f  direR = 4, then exactly one of 
the following holds: 

(i) p > 2, G ~ X x Zp with a group X isomorphic to the adjoint group of some nilpotent p-algebra of 
dimension 3; 

(ii) p = 3, G -~ X x Z3, where X is a metacyclic Miller-Moreno group of order 27; 
(iii) p = 2, G is a group of class at most 2 and of exponent at most 4; 
(iv) p. = 2, G ~ Zs x Z~.. 

P r o o f .  By Corollary 2.1, we may assume that G is not metacyclic. It follows from Theorem 2.2 that  
u(R) _< 4. If u(R) < p, then G is either an elementary abelian p-group or a nonabelian group of exponent p. 
It follows from Theorem 3.4 that  the algebra R can have an adjoint group G with two generators (p > 2) if 
and only if d i reR _< 3. Hence we may assume that  d(G) _> 3 and by Burnside's basic theorem IG/@(G)I > p3. 
This implies I G'I = p in the noncommutative case. It follows from the description of the groups with Frattini 
subgroup of order p (see [13, Satz III.13.7]) that  G ~ X x Zp, where X is a nonabelian p-group of order p3 
or is a central product of a nonabelian group of order p3 and a cyclic subgroup of order p2. Since ~(R) _< 4, 
this case can occur only for p <_ 3. Assume that p = 3 and G is not an abelian 3-group (if G is abelian and 
I(I)(G)I = 3, then G -~ Z9 x Z3 • Z3). If the exponent of G is not 3, then u(R) = 4 and R contains a power 
subalgebra L of codimension 1. From Theorem 2.2 we obtain that  this is case (ii) of Theorem 4.2. Assume 
now that  p = 2 and G is not an elementary abelian 2-group. By a theorem of Tausski (see [13, Satz III.11.9]), 
if IG : G'] = 4, then G is a metacyclic 2-group. By Corollary 2.1, this leads to a contradiction. Hence 
[G/G'[ > 8. If d(G) = 2 and G is a nonabelian group, then it is a Miller-Moreno group by Lemma 3.1(ii), 
and so by Lemma 3.1(i) and Theorem 3.3 we have the required conclusion. Therefore d(G) > 3 and G' = (D(G) 
has order 2. In this case, G is a group of class 2 and of exponent.4. The abelian case gives no difficulties. 
The theorem is proved. [] 

T h e o r e m  4.3. Let G be a nonabelian adjoint group of some nilpotent p-algebra R of dimension 5. Then one 
of the following holds: 

(i) G is p-group of class 2 and of exponent p; 
(ii) G is one of the following groups of class 3: 

(a) G - Z x Zp (p >_ 3), where X is a p-group of maximal class of order p4 with exp(X) = p for p > 3; 
(b) G = (a, b, c, d, e> (p ~ 3) with relations b p = c p -- d p -- e p -- 1, (d) -- Z(G), (a,b) = e, (e,a) = d, 

(b ,c )=d,  (a,c)= l,  a p - - a  m (n=O i f p  > 3 a n d n E  {O,1} i f p = 3 ) ;  
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(c) G = <a,b,e,c> (p = 3), where b 3 - a 9 = c a = e 3 = 1, (a,c) = 1 = (e,c) = (e,b), (a,b) = c (~) 
(/z E {1 , -1} ) ,  (c,b) = a 3 = (a,e); 

(d) G = ( a , b , c )  ( p = 2 ) , a  4 = b  4 = c  2= l, (a,e) = l,  (a ,b)=c ,  (b ,c)=a2;  
(fii) G is a p-group (p < 3) of class at most 2 and of exponent <p2 such that G' is group of order ~_p2 and 

�9 (G) <_ Z(G) is an elementary abelian p-group. 

P r o o f i  Assume tha t  v(R) > p. Since v(R) <_ dim R 4- 1 and v(R) = dim R 4- 1 only for power algebras,  we 
may  a s sume  tha t  u(R) < dim R. The case where equal i ty  holds is described in Theorem 2.2. Hence we m a y  
assnme t h a t  v(R) < d i r e r  - 1 = 4 in each case. 

Cons ider  first the case p = 2. Since v(R) < 4, G is a group of exponent 4. By  a theorem of  Tausski  
(see [13, Satz  III.11.9]) and  Corollary 2.1, we have [G:  G'[ > 23 and [G'[ < 4. If  [G'[ -- 2 and d(G) -- 2, t h e n  
by L e m m a  3.1 G is a Miller-Moreno group and Theorem 3.3 gives the required assertion. 

I f  [G'[ -- 2 and d(G) > 3, then r < Z(G), which also gives condition (iii) of the  theorem. T h e  same 
is t rue  if  r  ~ Z(G) is an  elementary abelian group and [G'[ = 4. Hence we may  assume tha t  e i ther  
r y~ Z(G)  or ~(G) is no t  an  elementary abelian 2-group. 

We shall  prove tha t  G'  is an elementary abelian 2-group. Assume tha t  G'  is a cyclic group of order  4. I f  
G/G'  is e lementary  abelian, then  (a, G') is a group of order 8 tha t  has a cyclic subgroup G' of index 2. Since 
G has  no  elements of order 8, we have a s E f~l(G'). This implies tha t  G/f]I(G') is an elementary abe l ian  
2-group a n d  G' < f~l (G'), which is a contradiction. 

Therefore ,  the group G/G'  is not elementary abelian, and so G/G' ~- Z4 x Z2. It is clear that  G has  two 
genera tors  a, b such tha t  at  least one of them, say b, is in the  centralizer of G'. If (G', b) is a group of  order  
8, t h e n  we m a y  take b of order 2. This implies 

1 = (a, b :)  = (a,  b) o (a, b) b = (a, b) :,  

and G'  is of  order 2, which is impossible. Finally, if (G', b) is a group of order 16, then  a (-1) oboa = bo (b, a) 
and (a o b) 4 -- ((a o b)2) 2 -- a 4 o b 4 o (b, a) 2 - -  (b, a )  2 ~ 1. This is a contradiction. 

Hence  G' is an elementary abelian 2-group. If G' ~_ Z(G) and d(G) = 2, then  G = (a, b) with (a, 5) 2 ---- 1, 
(a, b) E Z(G),  and by Lernma 3.1 G is a Miller-Moreno group. 

Therefore,  if G' < Z(G),  then d(G) >_ 3 and [G/~(G)[ > S by Surnside 's  basic theorem. It follows t h a t  
G' -- r  <_ Z(G), and we are done. 

Cons ider  now the case G' y~ Z(G). Since ]G'[ = 4, H --- CG(G') has index 2 in G. If an e lement  
a E G \ H induces an automorphism of H of order 2, then  for each h E H we have (h, a) = h (-1} o h a and  
(h, a) ~ ---- (h~) (-1) o h ~2 = (h (-1) o ha)(-1) = (h, a) (-1). 

Since each element in G' has order at most 2, we have (H, a) <__ Z(G). On the other  hand, H' ~_ Z ( H )  
and since [HI = 16, it is clear tha t  also H' <_ Z(G) (if H is nonabelian, then  it is either a Mil ler-Moreno 
group  or  = 2).  

Hence  there are no involutions in G \ H,  H is nonabelian, and a 2 E H \ Z (H)  for each a E G \ H .  
Moreover,  Z(H)  > G' is noncyclic. Since H = CG(A) is a subalgebra of R with  d i m H  = 4, we m a y  use 
Theorem 4.2. Let x, y be noncommuting elements in H.  If  (x, y) _> Z ( H ) ,  then  (x, y) = H is a Mi l l e r -  
Moreno group of order 24, satisfying the restrictions on H.  It  is easy to see t ha t  this is a group of t he  fo rm 
((x) x (z)) ~ (y) with x 4 --- z 2 = y2 = 1 and (x, y) = z e Z(H).  Since G' = (x 2) x (z), it follows t h a t  the  
subgroups (x) x (z) and (x 2) are normal in G. Hence (x 2, a) = 1 for each a E G. On the  other hand, (z) = H '  
is no rma l  in G and (z, a) -- 1 for each a E G. In this  case G' <_ Z(G). We may  assume now t h a t  (x, y) 
does no t  conta in  the center of  H.  Since (x, y) is a nonabel ian group, it has order 8 and H = (x, y) x (z) for 
some element  z of order 2 in G' < Z(H). If (x, y) is a quaternion group, then  all involutions in H lie in  its 
center. This  is impossible by the above. Hence H ~ Ds x Z2. Wi thout  loss of generality, we may  a s sum e  
t h a t  a 2 = x E H \ Z ( H )  and y is an element of order 4 in H, z e G ' \ ( ( x , y )  NG'). Then ((y) x (z/) ~ (a) ---- G 
and a 2 o y 0 a 2 = y(-1) .  S i n c e  (y2, a)  --- 1, a permutes the  involutions z and y 2 z ,  i.e., a (-1) o z o a = z o y2. I t  
is clear t h a t  a (-1) o y o a ~ (y). Therefore a (-1) o y o a = y o z or y o z o y2. We m a y  denote the element (y,  a) 
by z a n d  t h e n  G is a group of type (ii) of the theorem. We show now tha t  the  algebra R with the  ad jo in t  
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group of this form really exists. Let R be a matrix algebra consisting of all matrices over GF(2) of the form 

0 a 3 7 6  A I 0 0 0  a 0 0 
0 0 0 0  a 3 + 7  
0 0 0 0 0  0 
0 0 0 0 0  a 
0 0 0 0 0  0 

Then R ~ = G has the required structure. 
Let p _> 3. By Corollary 2.1 and Theorem 2.3, if R 4 # 0, then G is one of the groups of Theorem 4.3. 

H e n c e / P  = 0. On the other hand, d(G) _> 3 by Theorem 3.4, so in each case [G'[ _< p2 by Burnside's basic 
theorem. There are two possibilities: G' ~ Z(G) and G' < Z(G). The lat ter  gives us conclusion (i) or (iii) of 
Theorem 4.3. Hence G' ~ Z(G) and [G'I = p2. By [15, Lemrna 1.6.10], if [R 2 : R31 = p, then R 2 < Z(R) and 
G' < Z(G), which is not the case. Hence I R2 : Ra[ = p2 and dim R 3 = 1. Thus there is a basis a, b, c, d, e of 
the algebra R, such that d E R 3, {c, e, d} is a basis for R 2, and a, b E R \ R 2. Since IG'] = p2, H = Cc(G') is 
a subgroup of G of index p and a is a subalgebra in R of codimension 1. We may assulne that  b E H. Note 
that d E A n n R  and R 2 is generated by elements ab, ba, a2, b 2, and d. Since R 4 = 0, R 2 is a null algebra and 
in particular e 2 = c 2 = d 2 = O. Since xc, xe E R 3 for each x E R, ((u, d)) is an ideal in R for each u ~ R 2. If 
H is a commutative subalgebra, then IZ(G)[ > p2, since by Theorem 3.4 d(G) > 3 a n d  Z(G) # G' since G 
is assumed to be of class 3. Now it is easy to obtain the required relations for G (provided the exponent of 
H is p): 

G = (x, y, zl, z2, a) with relations (x, a) = y, (y, a) = zl, (z2, a) = (zl, a) = 1, a p = 1, 

and (x,y, zl, z2) is an elementary abelian p-group. We need to show tha t  there exists a nilpotent p-algebra 
R with required adjoint group G. This group is a direct product of a p-group G1 = (x, Y/and  (z). Consider 
the set of 6 x 6 matrices with coefficients in GF(p) and of the form 

O a 3 7 )~ 6 ) 
0 0 0 - ix  - 3  A 
0 0 0 0 a a + 7  
o o o  o o 3 " 
0 0 0 0 0 - a  
0 0 0 0 0 0 

Obviously the set of these matrices is an algebra of dimension 5 containing a basis {a, b, c, d, e} that  satisfies 
the r e l a t i o n s a b = - e ,  b a = e + d ,  a e = d ,  e a = - d ,  e b = b e = 0 ,  a c = c a = 0 ,  b c = d = c b ,  a 2 = - c , a n d  
b 2 = 0. It is easy to see that the adjoint group of this algebra is G. 

If H is commutative but not elementary abelian, then p = 3 and there exists an element b E H such 
that  b 3 # 0. By Theorem 2.2, we may choose a basis in H of the form {b, b 2, b 3, c} with cb = bc = O. By the 
above discussion, ((b3)) = R 3 is an annihilator of R and {b2, b3,c} is a basis for R 2. Let a E R \ H. Since 
a 2 = ~1 b2 + ~2b 3 +/33C, ab = alb 2 + o~2 b3 -4- a3C, ba = 71b 2 + 72 b3 + 73c (~i, /3j ,  7k E GF(3))  and ab, ba E H, 
we have b2a = b(ba) = (ba)b = b(ab) = ab 2 = (ab)b. This implies tha t  b2a = 71b 3 = ab 2 = ~1 b3 and a l  = 71. 
Now it is clear that  G' = ((b 3, c)) and ((b 2, b3)) = Z(G) (recall that  G' ~ Z(G)). It is possible to describe 
the structure of the adjoint group G of this algebra. The group G has generators a, b, c, and d such that  
b 9 = c  a = d  3 = l , a  3 = b  (3*),(b 3, c) = G' and (b, a) = c, (c, a) = d, (a, d) = (b, d) = l, or (b, a) = c, (c, a) = b 3, 
(a, d) = 1. But (b, b o c, d) = H in the first case and then G = (a, b), which is impossible. Hence there is 
only one possibility (up to the choice of notation): G = (a, b, c, d) with (b, a) = c, (c, a) = b (3u) ,/z E { I , - 1 } ,  
(d, a) = 1 and G -~ ((b) • (c)) • (a) • (d); b 9 = ca = d 3 = 1, a 3 = b (3*), 6 E GF(3)*. This case really occurs 
since there exists an algebra R of 6 • 6-matrices with coefficients in GF(3)  whose adjoint group is isomorphic 
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to G. These matrices have the form 

0 a / 3 6  "I 
O 0 0 a - / 3  
0 0 0 / 3  a 
0 0 0 0  0 
0 0 0 0  0 
0 0 0 0  0 

-9 '  
6 

/ 3  �9 

c~ 

0 

nonabel ian group. We have the following two It remains to consider the  case H = C a ( G ' ) ,  where H is a 
possibilities: 

(a) there exists an element b E H such t h a t  b 3 ~t 0; 
(b) x 3 = 0 for each x E H.  

In case (a) there exists a basis {b, b 2, b 3, c} of  the  subalgebra H such tha t  cb = O, bc = b 3, a n d  c 2 = 6b 3, 

6 E G F ( p )  (see Theorem 2.2). S i n c e / P  = (R2) 2 = 0, it is clear t ha t  c 2 = 0. Therefore cb = 0 = c 2, 

5c = b 3, and Z ( H )  = <(b 2, 53>> = G' is an  ideal  in R. This forces t ha t  R I G '  is a commutative algebra and 
In, b] = - b a  + ab 6 G ' ,  so t ha t  we can write 

ab = a l c  + a2b 2 + 0~353, " ba = a l c  +/32b 2 a u/33b 3 (Oti,/3j E G F ( p ) ) .  

On the other hand,  <(c, b3>> is also an ideal  of  R. Hence R / ( < c ,  b3>> is a noncommutat ive  3-dimensional 
algebra. By [15, Theorem 2.3.6], we may  assume tha t  b 2 - ba (mod <(c, b3)>) and ab =_ 0 (mod <(c, b3>>). 
Thus ab = a l c  + a3b  3, ba = a l c  + b 2 +  /33b 3, bc = b 3, cb = 0, ac  = Ab 3, and ca = #b  3 for some A, # E G F ( p ) .  

Using these relations, we obtain ab 2 = (ab)b  = O, b2a = b(ba) = a l b c  + b 3 = ( a l  + 1)b 3, and (ba)b = bab = 

a l c b  + 53 = b(ab) = a l b c  = a l b  3. Hence a l  --- 1 and  we can rewrite our relations in the following form: 
ab = c + a b  3, ba = c + b2 + /3b 3, bc = b 3, cb = 0, ac  = Ab 3, ca = #b 3, ab 2 = 0, and b2a = 253, where 
a = a3 , /3  =/33,  and ba5 = b  3. It is easy to  see t h a t  a2b = ac  = Ab 3 a n d b a  2 = c a + b 2 a  = ( # + 2 ) b  3. 
Obviously a 2 = 9'1c + 9'2b 2 + 9'3b 3, where 9'1, 9'2 , ")'3 E G F ( p ) .  Since a2b = Ab 3 = a25 = "hcb + 9'2b 3 = 9'253, 
9'2 = A. On the other hand,  ba 2 = ca + b2a = ( #  --F 2)b 3 = b .  a 2 = 9"~bc + 9,2b 3 =.(9'~ + 9'2)b 3. It follows tha t  
a 2 = (/z - A + 2)c -}- Ab 2 + 9'b 3 with 9' = 9'3- Since aba = a b .  a = a .  ba, aba = ca = ac  + ab 2 = ac = Ab 3 = #b 3 
and A = #. Thus a 2 = 2c  + Ab2 + 9"b 3 and the  equal i ty  a . a 2 = a 2 . a = a 3 implies a 3 = 2ac  + Aab 2 = 2ca+Ab2a, 
soAab 2 = A b 2 a = O = 2 A b  3. This f o r c e s A = 0 .  F i n a l l y a b = c + a b  3 , b a = c + b  2 + / 3 b  3 , b c = b  3 , c b = 0 ,  
ac  = ca = O, ab 2 = O, b2a = 2b 3, and a 2 = 2c § 9'b 3. If p > 3, then  the adjoint group of this algebra has 
generators a , b , c , d , e  with  the  relations a p = b p = d '  = d p = e p = 1, d E Z(G),  (b,a) = e, (e,a) = d, and 
(b, c) = d. One example of an algebra of this  k ind  is given by all 6 • 6-matrices with coefficients in G F ( p )  of 

O a 
0 0 
0 0 
0 0 
0 0 
0 0 

/3 7 6 A \ 
0 2 a + / 3  0 0 

J 0 a a + / 3  7 + 6  
0 0 0 0 " 
0 0 0 2 a + / 3  
0 0 0 0 

the form 

If p = 3, then  the adjoint  group of this a lgebra  has generators a, b, c, e with relations b 9 = c 3 = e 3 = 1, 
(5, a) = e, (e, a) = b (3A), (b, c) = b 3, A E GF(3)* ,  b 3 E Z ( G ) ,  and a 3 E <b3>. 

Consider now case (b). There are no addi t iona l  cases if p > 3 or if exp(G) = p since the structure of 
a group G having a subgroup H of order io4 a n d  of exponent p is completely determined if we know tha t  
G'  = Z ( H )  (see [5], this  is a group of type  40 in this  nst). But  we have already shown the existence of such 
a group as the adjoint group of an appropr ia te  algebra. Hence we will assume tha t  p = 3 and G is not a 
group of exponent 3. In this  case, also x 3 = 0 for each x E H and  there exists an element a E R \ H such 
tha t  a 3 # 0 = a 4. Obviously, there exists a max ima l  noncommutat ive  subalgebra L of R containing a. By 
Theorem 2.2, L has a basis {a, a 2, a 3, c} such t h a t  a c  = 0, ca = a 3 and  c 2 = 6a 3 for some 6 E GF(3) .  An 
element b E H \ L satisfies b 3 = 0. As above, R 2 = {a 2, a 3, c} and R 2 is a null algebra, so tha t  6 = 0. Since 
G'  ~ Z ( L ) ,  e = Aa 2 + c 6 G'  for appropriate  A E GF(3)  a n d  (7' = <<e, a3>> C C a ( b )  for 5 6 H \ L, Since 
b 2 E R 2 and R 2 is a commutat ive  subalgebra of L,  <(b, Cz(b)>) is also a commutative subalgebra. Moreover, 
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it :has d imens ion  at  most 3 since there are no commuta t ive  subalgebras of codimension 1 in R. It follows 
that  C L ( b )  -= G '  a n d  b 2 E G ' .  Since G' is an ideal in our  case, R / G '  is a commuta t ive  a lgebra  of dimension 
3, having power  subalgebra ((a + G'>) of codimension 1. By  [15, Theorem 2.3.6], we have ab - ba - -  0 

(mod G') a n d  b 2 - -  0 (rood G'). Hence ab = a l e  + 0~2 a3,  b 2 - -  "/le -}- 72a  3, and ba = j31e + f~2 a3 for some ~i, 
bj, 7k E G F ( 3 ) ,  1 < i, j ,  k _< 2. 

Note  t h a t  a e  = Aa 3 and ea  = (A + 1)a a. If 71 ~ 0, then b 3 = 0 implies eb = be = O. Since ab 2 = (ab)b = 

(a,  e + ~2a3)b - -  o~leb -4- o~2a3b = 0 in  this case, ab 2 = 71ae  = ~/zAa 3 = 0 and A = 0. For  the same reason, 
b2a = 0 a n d  b 2 �9 a = 71ea = VI(A + 1)a 3, which implies A + 1 = 0. This is a contradict ion,  and 71 --- 0, 
b 2 = 7a  3, where  7 = V2. In this case, also be = eb = o a  3 for some a E GF(3) .  Therefore  b 2 �9 a = a .  b 2 = 0. 
On the o ther  hand,  ab 2 = o~leb = 131be = c~laa 3 = ~ l o a  3. I f  a ~ 0, then ~1 = 131 = 0 and  ab - ba E Z ( R ) ,  
which is no t  t he  case. Thus be = eb - -  0 a n d  ab 2 = b2a = O. 

Since a b .  a = a .  ba, o~lea = j3zae -- a l (A + 1)a 3 ---- ~ l A a  3. This forces tha t  c~z(A + 1) = f~zA and  
(al  - ~I)A ~ ~1 = 0. Note tha t  a l  ~ f~l, since ab - ba = [a, b] ~ Z ( R ) .  Consider poss ible  types of groups 
with this s t ruc ture .  By  Theorem 4.2, the subgroup L ~ has the following structure: L ~ = (<a> >~ <e>) x <c>, 
where (e> • <a3> -- G', a 9 -- e 3 = c 3 -- 1. An element b E G \ L ~ has order 3 and b centralizes (a3> x <e) -- G'. 
Since (a> m (e> = K is normal in G, (a, b) = ez for some el E K of order p. Wi thou t  loss of  generality, we m a y  
assume t h a t  el  = e. Hence it remains to describe the  act ion of b on c. Since Z ( L  ~ = <a3> x <c> is normal in 
G, so (c, b) = a (3~) for some a E GF(3)*.  This forces (c 2, b) = a (a'2~), and we may assume tha t  (c, b) -- a 3 for 
some element  c E Z ( L ) .  Thus (a, b) = e, (e, b) -- 1, (c, b) = a 3, b 3 = a 9 -- c 3 = e 3 --- 1, and  (a, c) = 1 = (e, c). 
Thus, the  s t ruc tu re  of G is completely determined. On  the  other hand, the 3-algebra R of 6 x 6-matrices 
over G F ( 3 )  o f  the  following form has the required adjoint  group of class 3 :  

/ O a B ~, 5 A ) 
0 0 0 a ~ o , - ~  
0 0 0 0 0 0 
0 0 0 0 0 a - ~  " 
0 0 0 0 0 0 
0 0 0 0 0 0 

In [21], t he  p-groups of  order p5 and of class 3 tha t  are the adjoint group of some ni lpotent  p-ring R are 
determined.  These  are the groups of types 4, 5, 19, 201, 21, 40, 41, and 54 in [5]. It  follows from the above  
theorem t h a t  t he  only groups of types 4, 19, 201, 40, and 41 are the adjoint group of  some nilpotent p-algebra 
and the t ypes  19, 201, and 41 occur only for p = 3. [] 

5. Some Special Nilpotent p-Algebras 

In this section,  we will present some examples and constructions for nilpotent p-algebras.  

E x a m p l e  5 .1 .  Let  R be a commutat ive 
of the form 

nilpotent mat r ix  algebra over the  field F ,  consist ing of all matr ices  

0 (:~12 O~13 """  O/lm X 
% 

0 0 a~3 ---  a 2 , ~ J .  

o o  . . . .  o : : :  o 

If R contains a matr ix  of the  form 

a I O 1 0 --. 0 1 0 0 1 --- 0 

o ' 
0 0 0  . . .  0 
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then 

0 0 a - - -  7 

R-_ 0 0 0 : : :  
0 0  0 - - -  0 

j3 ,7 . . .  E F / , 

and R is called a triangularly striped matrix algebra [20]. It is clear that  the set of all triangularly striped 
( m +  1) • ( m +  1)-matrices over F is a commutative nilpotent algebra over F of dimension m and of nilpotency 
class m. Since a "~+i = 0 ~ a m, this is a power algebra over the  field F. 

E x a m p l e  5.2. Let R be a set of all matrices of the form 

0 0 0(a) 
0 0 0 

with elements a, b in an algebra L over the field F and an endomorphism O of the additive group of L. Then 
R is a nilpotent algebra of class 2 over F that is commutative if aO(c) = O(c)a for each pair (a, c) E L • L. For 
example, if F = GF(2), L = GF(2m), and 0 is an automorphism of the field L,  then we have an algebra R(L)  
whose adjoint group A(m, O) is described in [14]. A particular case of this is a Sylow 2-subgroup of the Suzuki 
simple group 2B2(2"~). Since G = R ~ is a group that has an automorphism transitive on maximal subalgebras 
(of codimension 1 in R), there exists a 2-algebra all of whose maximal subalgebras are isomorphic. Moreover, 
each subgroup of the adjoint group of this algebra is a subalgebra (see, for example, [18]). These groups 
are noncommutative and have rank m, while the corresponding algebra has dimension 2m. For p > 2 these 
algebras give examples of algebras for which dim R -- 2(r (R ~  where r (R  ~ is the Priifer rank of R ~ We 
do not know whether such examples exist in the commutative case for p > 2. 

The other series of examples occur if we take the field L = GF(q 2) of characteristic p with an automor- 
phism 0 of order 2 of this field. The set of matrices of the form 

0 0 
0 0 0 

with coefficients a, b E L is a p-algebra R(L) whose adjoint group contains a Sylow p-subgroup of a group 
2A2(q) -- U3(q). It consists of matrices satisfying the relations tr(b) + N(a) = 0 and N(a)  = aO(a). However, 
the property tr(b) + N(a) = 0 is not inherited by the sum of matrices and it is possible to prove that  the 
Sylow 2-subgroup S of U3(q) is the adjoint group of some nilpotent p-algebra finding an appropriate ideal J in 
this algebra over GF(p) such that  (R(L) /J)  ~ is isomorphic to S. Below we will describe another construction 
that shows that every group of class 2 and of exponent 4 is the  adjoint group of some nilpotent p-algebra. 

E x a m p l e  5.3 (see also [6]). We shall prove that every 2-group of class 2 and of exponent 4 is the adjoint 
group of some nilpotent 2-algebra. The following property is crucial (see [6]): If G is a nilpotent group of 
class 2 and of exponent 4, then @(G) < Z(G) and is of exponent 2. Let G be a 2-group for which the above 
property holds, xi, x2, . . .  , Xd be a minimal set of generators of a group G, and zi, z2 , . . .  , Zk be a minimal 
set of generators of a group r  Attach to G the vector space R = V ~ W over F = GF(2), where V and 
W are its subspaces of dimension d and k respectively. We consider a one-to-one map r : G -+ R given by 
the following rule: if 

f f  ~--- X l ~  a 2  . . . Xdad  Z l ~ l  Z2 ~2 . . . Zk ~k ,  

d k 
then r  -- ~ c~,vi + ~ ~jwj, where vl, v2 , . . . ,  v~ is a bas i s  of V and wi, w 2 , . . . ,  wk is a basis of W 

i=I j=l 

and ~i , f l i  E F(i  < d , j  <_ k). The multiplication in G determines two functions on R, a commutator  
function (x~, xj) E @(G) for each pair x~, x i in {x~, x 2 , . . . ,  xd} and the square map x~ -+ x 2 E @(G) for each 
xi E {xi ,  x2 , . . .  , Xd}. Define products of elements in R by the  rule vivj -- 0 if i < j ,  v~vj --- r xj)) E W if 
i > j ,  and v~v~ = r 2) E W for each x~, xj E {x~, x 2 , . . . ,  Xd}. Since the commutator and squaring function 
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satisfy the well-known identities (a, b) -- (b, a) (recall that G is a 2-group) and (a o b, c) -- (a, c) o (b, c), 
(a 0 b)  2 - a 2 0 b 2 0 (a, b) for any a, b, c E G, we have r  o y ) 2 )  __ r 2) _1_ 0(y2) q_ ff)((X, y)) for each pair of 
elements x, y e G. Moreover, [v~, vj] = v~vj - vjv~ = r xj)). By linearity we obtain the multiplication on 
R. If 

d k d k 

i = l  j = l  i = 1  j = l  

d d 

then uv  = E E ~ and  r  = r  - v u )  = ( r  for each pair of elements 
i = 1  j = l  

k 

u, v E R. It is easy to find a matrix representation of an algebra R.  I f  v lv j  = ~ ~ w 8  with fl~ E F,  then we 
i = l  

have the matrices 

,~"il ~ i l  " " " t - ' i l  

/ o : !  �9 __ . . .  

b ' i d  i d  " ' "  . i d  

where/3~1 are as above, and the elements xi are  represented by matrices of the following form with 1 in 
position 1, i + 1: 

0 --- 1 0 -.- 0 ) 
0 . . .  0 0 . . .  O(Xi) �9 
0 . . .  0 0 . . .  0 

2 and  x i x j  correspond to the following matrices: Thus, to x i 

(Oo , (Oo 
respectively. By linearity we have determined all elements of a matrix algebra of dimension d + k (which is 
a subalgebra of a (d + k + 1) • (d + k + 1) matrix algebra), and they are of the form 

0 x y ) 
o o , 

0 0 0 

d 

where x E F d ~- V and  y E F k ~- W .  If x = ~ A~vi, then/?(x) --- ~ AiO(zi). The adjoint group of this 
i = 1  i = 1  

algebra is isomorphic to G by construction. Note that  these arguments are valid for infinite 2-groups of 
exponent 4 as weft. 

E x a m p l e  5.4. The same construction can be used to show that any p-group of class 2 and of exponent p is 
the adjoint group of some nllpotent p-algebra provided p > 2 (see also [17]). The details are omitted. Note 
only that it also leads to matrices of the form 

0 x y ) 
0 0 e(x) , 
o o o 

where O(x) is determined as in the preceding example. The last example is also interesting since it gives the 
matrix description of all p-algebras (p > 2) each subgroup of whose adjoint group is a subalgebra [18]. 

E x a m p l e  5.5. An interesting series of examples can be obtained by a generalization of Example 5.2. Let A 
be a commutative p-algebra and 81,82,... ,/gk-1 be endomorphisms of its additive group. Define R k ( A )  to be 
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the set of all (k + 1) x (k + 1)-matrices with elements in A of the following form: 

0 0 01(al) . . .  01(ak-1) 
. 

0 0 0 --- 0 

Under suitable restrictions on the operators 8~ these matrices form an algebra. For example, if A -- F = 
GF(p~) ,  8~ = 8i, where 81 = 8 is a Frobenius automorphism of F,  then Rk(A) is a p-algebra that contains a 
power subalgebra of dimension k over GF(p). The dimension of Rk(A) over GF(p) is m k  and its nilpotency 
class is k. 

E x a m p l e  5.6. The adjoint group of the direct sum R = R1 @ R2 of two nilpotent p-algebras R1 and R2 
with adjoint groups R~I = G1 and R~ = G2 respectively, is G = G1 • G2. If J1, J2 are subalgebras of 
Ann(RI)  and Ann(R2) respectively and r : J1 -+ J2 is an isomorphism from J1 onto J2, then the subalgebra 
I = {j - r E J1} of R is contained in the  annihilator Ann(R) of an algebra R. The quotient algebra 
R / I  is called the sum of subalgebras with joint subalgebra I _~ J1 ~- J2. It is clear that  the adjoint group 
of this algebra is a central product G1 * G2 with common subgroup I ~ ~_ G1 f3 G2 C_ Z(G1) N Z(G2). This 
simple construction allows us to obtain new classes of algebras and their adjoint groups. For example, if 
G = (<a> x <z)) >~ <b / is a Miller-Moreno group of order p3 that is the adjoint group of a nilpotent p-algebra 
R defined by relations a 2 = b 2 = z 2 = O, ab = - b a  = z, then we obtain an algebra S whose adjoint group is 
of the form 

(((x) x ( t ) ) ~ ( y ) ) x A = H ,  [ x l = p  "~, l y l = p  k, I t l=p  ~, [ x , y ]= t  p~-', xP, yP, t e Z ( H )  

and A is an abelian group. 
Let U1,U2, and U3 be the  power algebras with dimU1 = p,~-m, dimU2 =pk-1,  and dimU3 = pn-1. It 

follows from the above consideration that the  element z of the algebra R is in the annihilator of R. We can 
form the algebra R1 = R ~B/-/1 G U2 ~ U3, where Ui = ((ui)) (i = 1, 2, 3). It follows from Theorem 2.1 that  
Ui ~ = C~ • Y~ with CI ~- 7~p.., C2 ~- Z~,  and C3 -~ Zp.. Moreover, Ci contains the annihilator of Ui for each 
i _< 3. Identifying the images of ul, u2, u3, a, b, z in R] with these elements, we have that  x = ul + a  has nillity 
p,,~-I + 1, y = u2 + b has niUity pk, + 1, and Ix, y] ---- [ut + a, u2 + b] = [a, b] 6 .An, (R �9 U1 ~B U2). Next form an 

algebra S = RI /J ,  which is a sum of subalgebras R + UI + U2 and U3 with joint subalgebra ((z)} m (<u~"-~>>. 
It is clear that  the subalgebra S generated by the  elements x, y, and u3 has an adjoint group of the required 
form. 

Similar arguments show tha t  for each MiUer-Moreno p-group M there exists an abelian p-group A, such 
that  M x A is the adjoint group of some nilpotent p-algebra R. 

E x a m p l e  5.7. It is possible to show that the  direct product of the dihedral group D of order 16 (or another 
2-group of maximal class and of order at least 16) with any abelian 2-group A carmot be the adjoint group 
of some nilpotent 2-algebra. On the other hand,  for any p-group G of order p4 with p > 2 and of exponent p 
there exists a nilpotent p-algebra R of dimension 5 such that G x Zp is the adjoint group of this algebra (see 
Sec. 4). 

E x a m p l e  5.8. The notion of a quasi-direct sum of rings was introduced in [9]. Let A and B be rings. A 
ring R, writ ten as A ~ B, is called a quasi-direct sum of A and B if the following conditions are satisfied: 

(i) B is a subring of R; 
(ii) A is an ideal of R; 

(iii) R is a direct sum of A and B as additive groups. 

Clearly, if R = A ~ B is a nilpotent or nil ring, then the adjoint group of this ring is a semidirect product 
/~o = A o >~ B o of the adjoint group of A and the  adjoint group of B. This de~nltion could be genera.lized in 
order to determine external quasi-direct s~,ms [9]. We present here a slightly weaker useful construction. 

Assume that M is a ring tha t  is also a right A-module. Define the ring R = M e ~ A in the following way: 
R = (M2,A) = {(ml, rn2, a)]rnl, m2 6 M,  a 6 A}  with (ml,m2,a) = (m~,m~,a') if and only if ml  = m~, 
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rn2 --- m~, and a = a'. The operations in R are defined by the laws 

(ml, a) + a') = + + + a'), 

m2, a ) = (mlml,  mira' 2 + rn2a, aa') 

It is easy to see that all ring properties are satisfied. If M and A are nilpotent rings of nilpotency class 
n(M), n(A) respectively, then R is a nilpotent ring of nilpotency class at most n(M) + n(R) + 1. This 
construction can be expressed symbolically in the  following form: 

(0 0) 
0 A 0 0 + 0 A ' 

and it is easy to see that the operations on R agree with this representation. Moreover, the elements (0, 0, a) 
with a E A form a subring isomorphic to A and the  elements (m, 0, 0) with m E M form a subring isomorphic 
to M. Again the structure of R ~ could be expressed in matrix form: 

0 A + I  ' 0 A + I  ' 0 I " 

E x a m p l e  5.9. A slight simplification of the above construction leads to the following definitions. Let A 
be a ring and M be a right A-module. Define R = (M,A)  = {(m,a)lm E M, a E A} with the equality 
(m, a) = (m', a') for m, m' 6 M ,  a, a' E A if and only  if m = m', a = a'. The operations on R are as follows: 

( , ~ , ~ ) + ( , ~ ' ; a ' ) = ( , ~ + m ' , ~ + ~ ' ) ,  (m,a)(m' ,a ' )  (ma' ,aa ') .  

As before, R is a quasi-direct sum of M and A where M is a null ring, and R is a nilpotent or nil ring if A 
has this property. A similar construction was used in [3]. 

We will use the preceding construction in order  to obtain the following. 

T h e o r e m  5.1. Let H be a subgroup of the adjoint group of some nilpotent p-algebra R such that H # is 
a linearly independent set in R. Let V be a right regular R-module, regarded as a null algebra. Then the 
quasi-direct sum L = V ~ R defined in Example 5.9 has an adjoint group that contains the wreath product 
Zp wr H of the groups Zp and H. 

Before the proof of this theorem recall some definitions. If R is a nilpotent p-algebra, then the additive 
group of the algebra A = R ~ 1.F (F  = GF(p)) is called a fight regular R-module and the action of R on V 
is defined by the multiplications-in R. If {1, al, a s , . . . ,  an} is a basis of A (and {a~, a 2 , . . . ,  a~} is a basis of 
R), then V has a basis of elements vl, val, va2,. �9 �9 , v~. and if 

n n 

a~r= E ~jaj  (r E R) then v ~ r =  E ~jv~r 
j= l  j = l  

This construction gives a natural  representation of  R as a subalgebra of Mn+I(F) and is described in [20]. 
We say that the subgroup H of the adjoint group of  p-algebra R is an active subgroup of R ~ if the regular 
representation of the algebra R induces a regular representation of H in the usual sense. In other words, H # 
consists of linearly independent elements in R. Hence A = R ~  1.F contains a group algebra of a subgroup H.  
It is clear that if H is an active subgroup of an algebra R, then di reR > ]H I. Thus, the theorem asserts that  
if H is an active subgroup of some nilpotent p-algebra R, then there exists a nilpotent p-algebra L = V ~ R 
whose adjoint group L ~ = V ~ >~ R ~ is a semidirect product  of V ~ and R ~ and L ~ contains a wreath product 
ZpwrH. 

P r o o f  of  T h e o r e m  5.1. Let {a~,a2,. . .  ,an} is a basis of R, where {a~, a2 , . .  , a~} = H # , m  < n. Let 
{vl, v~l, v~2,... , v~}  be a basis of V corresponding to  an algebra R + I . F  as described above. Then vla~ = v~ 
for each i < n. The action of a group R ~ on V ~ corresponds with the law u ~ = u(1 + r) for each u E V 
and r 6 R. Let U1 = {vl> be a subalgebra spanned by vl (this is also an additive cyclic subgroup of V). If 
U~' -- U~ for some a E R ~ then v~' = v1(1 + a) = Av~ for some A 6 F and vl((A - 1) - a )  = 0. It follows that 
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A - 1 = 0 and via = O, hence a -- 0. Thus, only the identity element of R ~ fixes 0"1. Let 12 = {U~Jh E H}. 
It is clear that for each h E H there corresponds a permutation 

r  U~ rr~oh rr~oh ~i ~i - - -  U ~  ~  ' 

where o is the operation in R ~ Since {h, al o h , . . .  am o h} = H, this map is well defined. It is obvious that  
r  o y) --- r o r since (1 + a~)(1 + h) = (1 + a~ + h + aih) = 1 + a~ o h, where a~ o h E R for each 
i <_ m. Assume that the elements vl, vl(1 + h i ) , . . .  , vl(1 + am) are not linearly independent. Then  there 

77~ m 

exists Ao, A1, . . . ,  Am E F such that  ~ A~ = 1 and ~ Aivl(1 + a~) = v l ( ~  A,(1 + a~)) = vl(1 + ~ )~ai) = 0. 
i = 0  i----0 i=L i----0 

Since ~ Aia~ = a E R, 1 + a is an invertible element in A = R + 1.F and the equality vl(1 + a) = 0 forces 
i----0 

vl = 0, which is not the case. Hence the subgroup T = (Uhlh ~ H> is a direct sum of subgroups Uh(h e H) 
and is invariant under H and T >~ H is isomorphic to the wreath product Zp wr H. Hence the adjoint group 
L ~ = V ~ >4 R ~ contains T >4 H _~ Zp wr H. Theorem 5. I is proved. [] 

It is easy to see that  any abelian group H can be embedded as an active subgroup into the adjoint group 
of some commutative nilpotent p-algebra. It is enough to consider the group algebra F H  over F = GF(p). By 
Theorem 5.1, for any p-group G with an elementary abelian commutator subgroup, there exists a p-algebra 
L such tha t  G _< L ~ and L ~ is a metabelian group. However, we cannot assume that  G can be embedded in 
some modular group algebra of the same nilpotency class in general, since usually a metabelian group algebra 
is abelian [7]. Therefore, no metabelian group can be the active subgroup of some nilpotent p-algebra with 
metabelian adjoint group. It seems that the following problem is open: is every finite p-group G embedded 
into the adjoint group of some nitpotent p-algebra with the same derived length? 
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