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ON THE ADJOINT GROUP OF A FINITE NILPOTENT p-ALGEBRA
B. Amberg and L. S. Kazarin UDC 512.554.31

The structure of the adjoint group R° of a finite nilpotent p-algebra R is considered under suitable
additional conditions. For instance, the cases where R contains a large power subalgebra or has dimension
at most 5, or when R° has small Priifer rank, are studied.

1. Introduction

An associative algebra over the Galois field GF(p) for some prime p is called a p-algebra. Nilpotent
p-algebras have been studied in several papers (see, for example, [15,20]). A nilpotent algebra R forms a
group under the “circle” operation z oy = zy + = + y for every two elements = and y in R. This group is
called the adjoint or circle group of R and is denoted by R°. It is well known that the adjoint group of a
nilpotent p-algebra is a p-group (see, for example, [3]). This raises the question of which finite p-groups occur
as the adjoint group of some (finite) nilpotent p-algebra.

It is clear that every elementary abelian p-group is the adjoint group of the corresponding null algebra.
On the other hand, for example, the group Z,» can only be the adjoint group of some nilpotent p-algebra
if p = 2. In general, there will be many nilpotent p-algebras with isomorphic (nilpotent) adjoint groups.
For example, it is observed in [15, Chapter V] that there are at least 100,000 nilpotent rings and more than
35,000 nilpotent 2-algebras of order 2%, but only 267 groups of order 2°.

In the following, we classify certain finite nilpotent p-algebras under additional restrictions. In Sec. 2,
nilpotent p-algebras with large power subalgebras are studied. The latter correspond to cyclic subgroups in
groups and algebras with large nilpotency class.

In Sec. 3, we study nilpotent p-algebras whose adjoint groups have small Priifer rank. It is, for instance,
shown that a Miller-Moreno p-group occurs as the adjoint group of some nilpotent p-algebra only when the
order of this group is extremely small. Also, it is proved that the adjoint group of a nilpotent p-algebra
with p > 2 has at least 3 generators provided the dimension of the corresponding algebra is at least 4 (see
Theorem 3.4).

In Sec. 4, the adjoint group of a nilpotent p-algebra with dimension at most 5 is investigated. In [21],
the adjoint groups of nilpotent p-rings for a prime number p > 2 were determined by relatively complicated
methods.

Finally, in Sec. 5, we discuss some constructions that are useful to prove that some particular groups
occur as the adjoint group of some p-algebra.

The notation is standard (see [3,15]). With few exceptions all groups and algebras are finite.
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2. Nilpotent p-Algebras with Large Power Subalgebras

An algebra R = ((a)) over the field F is said to be a power algebra if there exists an element a € R such
that every element of R can be expressed as f(a) for some polynomial f € F|z]. The least positive integer
m such that a™! # 0 = a™ is called the nillity (index) v(a) = m. Here v(a) = dim(R) + 1 = n(R) + 1,
where n(R) is the nilpotency class of R. The nillity v(R) of R is the maximum of all v(a), where a runs
through the elements of R. Obviously, ¥(R) < n(R)+1 < dim(R)+ 1. The subalgebra of R generated by the
elements z,, s, ... ,z, will be denoted by ({1, z2,...,Zs)), whereas the subspace of R generated by these
elements is (zy, s, ... ,Z,). Multiplication in the algebra R will be denoted by -, while multiplication in its
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adjoint group R° by o. The kth power of an element z € R° is (¥, and the kth power of z in R is z*. Note
that if £ = p™ for some positive integer m, where p is the characteristic of the ground field F', then we have
z* = z(®). The annihilator of the subset S of R is Ann(S) = {r € R|rs = sr =0 for any s € S}.

The structure of the adjoint group of the nilpotent power p-algebra R = {{a)) can easily be described.
Assume that dim(R) = n, ie., ™! = 0 # a”. Then v(a) = n + 1 and the rank of the adjoint group of R
is (R°) = r = n — [n/p] (see [2]). For a power p-algebra R, define a matrix M(R) = (oy;) of size | x r,
where [ = 1 + [logp n| and r is as above. The elements o4y, 2, ... ,ay of the first row are integers between
n and n — [n/p] + 1, namely a3 =n and oq541 = ay; — 1 fori =1,2,... I — 1. The elements in each column
are as follows: if ay; is the first element in the jth column, then we put ag; = ay;/p if p divides a;; and
ag; = 0 otherwise. The elements ay; are defined inductively by ag41; = ax;/p if p divides ag; and agq1; =0
otherwise foreach k =1,2,...,1.

By way of illustration, consider the following example: R = ({a)), n = dimR = 28, p = 3. Then
=28 — [28/3] =19 and | = [log; 28] + 1 = 4. Hence

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
M(R) = 0 9 60 0 8 0 0 7 0 0 6 0 O 5 0 0 4 00
M7 0 3 0 0 0000 00O 2 0 0 0 0 0 0 00O
010 0000 0 0 0 0O OODOTDOD OO O0TO
The matrix M(R) is of type (m1,ma,... ,my) if it has m; columns with exactly 1 nonzero element, my
l
columns with 2 nonzero elements, ..., m; columns with / nonzero elements. Note that > im; = n. Thus, in

i=1
above example M(R) is of type (13,4,1,1) and 1-13+2-4+3-1+4-1=28.

Theorem 2.1. Let R = {(a)) be @ nilpotent power p-algebra of dimension n whose matriz M(R) is of type
(my,ma,...,my). Then the adjoint group of R is isomorphic to a group

G=2Z,™ XxZp™ X ...xXZLy™.

Proof. It follows from the description of M(R) that 1-my +2-my+...+1-m; = n. Indeed, we may define
an equivalence relation on the set of elements {1,2,... ,n} as follows: z ~ y if y = zp* or = = yp’ for some
nonnegative integer ¢. Since n < p', there are at most l elements in each equivalence class. Moreover, these
classes have at most one representative in the set {n,n —1,... ,n —r + 1}. Associate with each column j
a generator y; = a¥i of a cyclic subgroup C; in R°, where k; is the only element in the jth column of the
matrix M(R) that is coprime to p. For 1nstance in the above example y; = a®, y; = a, yz = a5, ...,
y11 = a?,..., and so on. The subgroup C; = (a*) of R° contains the elements v = a*i,v?,... ,v¥°, where
oy = p’k]- (s = s(j)) is the first element in this column. By construction, ay;p > n for each 1 <j<r
Let w3 = a™, uz = o™, ..., u, = @ "L, The elements u;,uy,... ,u, are linearly independent in R and
if w € R satisfies w? = 0, then w = Ay + Agua + ... + Au, (where \; € GF(p), i < r) is a linear
combination of these elements. Hence the subalgebra U = ({uy,us,... ,u,)) has an elementary abelian p-
group of rank r as its adjoint group, and is obviously an ideal of R. Let U7 = ((u1)), U; = ((Ui-1,us))
for each i = 2,3,...,7. Then U; < Uy < ... < U, = U is a chain of subalgebras of U. Clearly, U; is
also an ideal of R for each ¢ < r. Define inductively the subgroups H of G = R° as follows: H; = Cj,

= (C;}i < 7). The multiplication law in R° and the relation 2™ = Z (})z* show that 0 (H;) = U; and

H; ,NC; = U,_l N(u;) = 1. Hence H; = H;_; x C;. An easy mductlon completes the proof, and so H, = G
since jG’[ = pratimettim ICzl X |Cof X ... X |Gyl U
The followmv theorem classifies finite nilpotent p-algebras with large power algebras.

Theorem 2.2. Let R be a nilpotent p-algebra of dimension n that contains a power subalgebra L = ((a))
of dimension n — 1. Then R = {({a,b)) with a® = 0 = ab and 5 = 0. Let the integer k > 0 satisfy
the conditions pF|n — 1, p**! An—1. The adjoint group L° of L contains subgroups H and C such that
C = Zpes1, L° ~ H x C, and either
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(i) R is commutative, b = Aa™!, A € GF(p), R°~ L° X Z,, orp=2,n =0 (mod 2) and R° ~ H x Z,,
or

(ii) R is noncommutative, ba = pa™!, b2 = Aa™"1, A € GF(p), u € GF(p)*, and one of the following holds:
(a) R°~ (H x C) x (b) with (a,b) =z € CNZ(R°),|z| = |b| = p;
(b) p=2, R° ~ (b) x H, where (b) ~ Z4, n =0 (mod 2) and (a,d) = b%;
(c) p=2,n=3, and R° =~ Qs.

This implies the following result of Gorlov (see [12]).

Corollary 2.1. If R is a finite nilpotent p-algebra whose adjoint group is metacyclic, then R° is either an
elementary abelian p-group of order at most p%, or p = 3 and R° ~ Zy X Z3, or p = 2 and R° is one of the
following groups: Zy, Zo X Zy, Zy X Ly, Lo X Zg, Zy X Zy, Dg, Qg.

The following lemmoa considers a more general situation.

Lemma 2.1. Let R be a nilpotent algebra over an arbitrary field F, containing a power subalgebra L of
codimension 1. Then R = ({a,b)) for some b € R\ L and L = ({(a)) such that the following holds: ab =
0,ba = Xa*"1,b% = pa*~1, where \,u € F and v = v(a) = v(R),n(R) = dim L = v(R) — 1.

Proof. Let v = v(a) for L = {(a)),b € R\ L. Then R = ({(a,b)) and ab € L since L is an ideal. Hence
v—1 v=1
ab= ) M\a' where \; € F,i=1,2,...,v—1. Then a(b— Y \a“"!) = 0. Assume that \; # 0. It follows

i=1 i=1
v—-1 v=1 .
that z=b— Y a" ' = -\ +b— 3 Ma*! € R+ 1L.F and is invertible. Therefore az = 0 implies a = 0,

t=1 i=2

v—1 .
which is not the case. Now-A\; =0, z= ) M\a'™! satisfies az = 0. Hence we may assume that ab = 0. Since

=2
v—1 . v—1 .
L is an ideal, also b = ), B;a’ for some fi,... ,Bp-1 € F. But *a = ab® =0 and so 3 Bja’*! = 0, which
j=1 j=1
implies By = B2 = ... = B,_2 = 0. Hence b* = ua”~! for some p € F. Since ab = 0 and ba € L, we have

v—1 v-1 .
ba = Y ;o' and aba = 0. This forces > y;0/*' =0and vy =7, = ... = v,_2 =0, so that ba = Aa*~! for
j=1 =1
some A € F. It is clear that n(R) > n(L) = v(L) — 1 = dim L. The element a*~! generates an ideal J of R
and R/J = ((a+ J,b+J)) is a commutative algebra, which is a direct sum of L/J and a subalgebra ({(b+ J))
of dimension 1. Hence the product of any v — 1 elements in R/J is 0 and n{R) = v(L) — 1 = v(R) — 1. The

lemma is proved. O

Proof of Theorem 2.2. Let R be a nilpotent p-algebra of dimension n that contains a power subalgebra
L = {{a)) of dimension n — 1. Let b € R\ L as in Lemma 2.1. Then ab = 0, ba = Aa™"!, and b* = pa™.
Since ab = 0, we have b = bb® = 0. Thus, if p > 3 there exists an element b € R° \ L° such that ¥ =0 in
R°. In this case, R° is a semidirect product of a normal subgroup L° and a subgroup isomorphic to Z,. If R
is commutative, then R° is even a direct product of these groups.

Let p = 2 and assume that R is commutative. Then if n = 1 (mod 2), we may take u = ua™ /2 and
v =u+b. It is easy to see that v? = u® + ub + bu + b® = 1® + b* = 0. Since v ¢ L, there is an involution in
R° —L° and R° ~ L° x Z, as above. Hence we may assume that n =0 (mod 2). It was proved in Theorem 2.1
that L° ~ H x C with C = (a™"!) (recall that n — 1 is odd), and we may have that R° ~ H x Z,. We show
that this case really occurs. Let N = L & S, where S is an algebra with generator s such that s> # 0 = s°.
In this case S° ~ Z4. The multiplication in IV is determined by the rule s{ = {s = 0 for each | € L and
multiplications inside the subalgebras L and S. The subalgebra J of N of the form {(s* + a™!)) is an ideal
of dimension 1 of N since J € Ann(N). Then the adjoint group of the quotient algebra N/J is isomorphic
to H X Z4.

Now let R be noncommutative. Since ab = 0 and ba € L, we have a(ba) = 0 and hence ba = Xa™! €
Ann(R) with A € GF(p)*. It follows that [a,b] = ab — ba = —Aa™"!. This implies the required relations for
p>2
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Let p = 2. If there is an involution in R° \ L°, then we are in a case discussed above. Hence we may
assume that there are no involutions in R° \ L°. Then 5 = o™! and ba = a™!. fn ~1=0 (mod 2) and
n > 3, then there is an element u = o™ 1/2 such that

(u+ b =ub+bu+u? + 5 = a2 4 pn-D/2,

Since aba = 0 in each case, it follows that (u + b)> =0 and u+ b € R\ L. Thus, either n = 0 (mod 2) or
n = 3. The last case leads to a quaternion group (s ~ R°. Now we will show that there exists an algebra R
of dimension n > 3 such that R° ~ (b) x H, where H X Z; = L° = ((a))°.

Note first that an algebra of the form (ii)(a) really exists for each prime p. This can be seen by direct
calculations, using a faithful representation of this algebra by (n + 1) x (n + 1)-matrices over GF(p)). The
adjoint group of this algebra T for p = 2 can be expressed in the form T = (H x (2)) x (z), where
{{a)}° = H x (2), z=a"", 22 =1, and (a,z) = z (z* = 0in T). Consider an algebra S = ((s)) with
s? # 0 = s* whose adjoint group is isomorphic to Zs and N = T @ S, a direct sum of two algebras T and
S. Then ts = st =0 for each ¢t € T. Let M = ({(a,z + s)). It is obvious that M° = (H x {z)) % {{(s + z))°
with relations [a, s +z] = z,a%(s + z) = (s + z)a® = 0. Clearly J = ({(s +z)? +a™"!)) is an ideal of M, and
we obtain an n-dimensional algebra R = M/J with a power subalgebra (L + J)/J of dimension n — 1. The
relation (z +s)? = s? implies that (z+5)2+J = s+ J = a”"! + J. Hence the required algebra exists. Thus,
Theorem 2.2 is proved.

Corollary 2.2. Let R be a nilpotent p-algebra of dimension n > p that contains a power subalgebra L of
codimension 1. Then r(R°) > (p—1)/pdim R and n(R) =n — 1.

Proof. The second assertion is clear. For every commutative algebra A, the subset T(A) = {z € A|2? = 0}
is a subalgebra of A. Since dim L < p/(p — 1) dimT'(L) for a power algebra L (see Theorem 2.1), we are
done if we are able to prove that T(R) is a commutative subalgebra of R and dim7(R) > dimT(L). By
the previous theorem, {{a?,a3,...,a*},b)) is a commutative subalgebra of R for each b € R — L. Hence
if a € T(R), then T(R) is a subalgebra. By the previous theorem, there exists an element in T(R) — T(L)
provided that p > 2. If a® # 0, then the corollary is proved.

If p> 2and a® = 0, then dimT(R) > dimL =p—1and n = p = dim R. Assume that p = 2. If
a € T(R), then a? = 0 and dim R = 2. In this case, 2dimT(R) > dim R. If n = 3, the corollary is also
true. Hence we may assume that dimR=n > 3. If n = 0 (mod 2), then R° — L° contains an involution by
Theorem 2.2. If n =1 (mod 2), then dimT(L) = (n —1)/2+ 1 and 2r(R°) > 2dimT(L) > n+ 1 > dim R.
This concludes the proof of the corollary. O

The assertion r(R°) > (p—1)/pdim R, which is equivalent to a well-known conjecture of Eggert (see [10])
in the commutative case, need not be true in general by [2]. Consider an algebra R whose adjoint group
is isomorphic to a nonabelian group of order p® and of exponent p. Then r(R°) = 2, but the inequality
2p/(p—1) 2 3 holds only if p < 5.

Corollary 2.3. Let R be a commutative nilpotent p-algebra whose adjoint group has rank at mostp. If p = 2,
thendim R < 4. Ifp > 2, then dimR < p+ 1. Equality holds if there exists an element of nillity p+ 1 or
p+2. Ifp=3andr(R°) =2, thendim R = 3. In all other cases with r = r{R°) < p we have dim R = r.

Proof. Let p = 2. Then the adjoint group of R is metacyclic and the statement is true by Corollary 2.2.
Hence p > 3. If v(R) < p, then R® is elementary abelian and dim R = r(R°) < p. Hence we may assume that
there exists an element a € R such that v(a) = v > p+1. If v > p+3, thenr(R°) > (p—1)/p(p+2) = p+1-2/p
and r(R°) > p+ 1. Assume that R # ((a)) and dim R > p + 1. Then there exists a subalgebra L > ((a))
with dim L = dim{{(a)) + 1 > p + 2. By Theorem 2.2 we have r(R°) > p + 1. Therefore we may assume
further that v = p+ 1. If dim R > p+2, then there exist subalgebras L and S such that {{a)) C L C S with
dim L = dim ({a)) + 1 and dim S = dim L + 1. By Theorem 2.2 it follows that r(R°) > p. If there exists an
element b € S — L such that b = 0, then r(R°) > p+ 1. Hence for each b € S — L we have b # 0. If o
and b® are linearly independent, then p + 2 = dim S > 2p by Eggert’s theorem [10]. This implies that p < 2,
which is impossible. Hence b = Aa? for some A € GF(p). It is clear that b— Aa € S — L and (b — Aa)? =0,
a contradiction. O
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Theorem 2.3. Let R be a nilpotent algebra of dimension at least 4 over an arbitrary field F. If the nilpotency
class isn(R) > dim R — 1, then v(R) > n(R) + 1. Hence R contains a power subalgebra of codimension <1.

Proof. If n(R) = dimR, then R is a power algebra by [15, Lemma 2.3.1].. Hence assume that n(R) =
dim R — 1. Let dim R = 4. Then by [15, Theorem 6.2.1], n(R) = 3 implies ¥(R) = 4. Thus for algebras R
with dim R = 4 Theorem 2.3 is true. Proceeding by induction, we may assume that this theorem is also true
for any algebra S with 3 < dim.S < dim R, satisfying the hypotheses of the theorem. Let J be an ideal of
R with dimension 1. If n(R/J) = n(R), then n(R/J) = dim R/J, so that R/J is a power algebra by the
above considerations. In this case, R has a power subalgebra of codimension 1 and we are done. Therefore,
we may assume that n(R/J) = n(R) — 1. -Since dim R/J = dim R — 1, we have dim R/J — n(R/J) = 1 and
by induction R/J has a power subalgebra L/.J of codimension 1. The full preimage L in R of L/J is either a
power algebra or is a direct sum L = S@ J of a power algebra S and an ideal J. Since dimS > 2,0# L2 < S
contains an ideal I of R with dimension 1. Note that L is not a power subalgebra of R because otherwise
we are done. Therefore, 0 # I is an ideal of R with trivial intersection with J and I + J C Ann{R). The
algebra R/I also has nilpotency class at most n(R) — 1 and since R < R/J x R/I, n(R) < n(R) - 1. This
contradiction proves the theorem. O

The analogs of Theorem 2.3 for commutative matrix algebras over the field of complex numbers can be
found in [20]. In general, there is no bound for ¥(R) in terms of n(R). It is possible to construct examples
of a family of algebras R;, i € N, where v(R;) is a constant and n(R;) > i for any i € N.

3. Nilpotent p-Algebras with Adjoint Groups of Small Ranks

Recall that a group G has finite Prifer rank r = r(G) if every finitely generated subgroup of G can be
generated by 7 elements and 7 is minimal with this property. In this section, we investigate the case where
the abelian subgroups of a group G that is the adjoint group of some nilpotent p-algebra have small rank. If
G is a group of rank 1 or a metacyclic group, the corresponding results were obtained by Ault and Watters
in [4] and by Gorlov [12]. The following theorem generalizes results mentioned above.

Theorem 3.1. Let R be a nilpotent noncommutative finite 2-algebra whose adjoint group G has no elemen-
tary abelian subgroups of rank 3. If G is not metacyclic, then one of the following holds:
(i) G~ Qs % Qs, where G' >~ Zy X Zy or G ~ Qs * Qs, a central product, or G is isomorphic to a subgroup
of these groups;
(ii) G ~ (a,b,c) with the relations a* = b* = ¢* = 1; a®> = &, (a,c) =%, (b,c) = &, (a,b) = 1;
(iii) G is isomorphic to a Sylow 2-subgroup of a group of type Us(4): G = (a, b, c,d) with relations a* = b* =
cd=dt=1d"=a’o b =0, (a,¢) =a? (a,d) = (b,c) =a’o ¥?, (b,d) = ¥?, (a,b) = (c,d) = 1.

Proof. Let A be a maximal abelian subgroup of the group G = R°. Then A is also a subalgebra of R. By
Corollary 2.1 it follows that A ~ Zg X Zg, Zs X Z4, Zs X Ly, Zs, Z3 X Zs, or Z,. Since G is not metacyclic,
the last 3 possibilities do not occur. If A ~ Zg x Z,, then A is a power subalgebra of R and so is a power
subalgebra of some subalgebra of R with dimension 5 since R is not commutative. By Theorem 2.2, G has
an abelian subgroup of rank 3. Hence we may assume that G has no elements of order 8. Assume that A
is a maximal normal abelian subgroup of G with rank 2. By the above discussion, A ~ Z4 X Zy or Zy X Z4
and G/A =~ Autg(A). Consider the centralizer H in G of a subgroup F = ;(A). It is easy to see that
|G : H| < 2. Note that H has exactly 3 involutions. Assume that g € G\ A. Then g¢? is an involution in H
and hence g2 € E. Now it is easy to see that G/E is an elementary abelian group.

Consider first the case A ~ Z; x Z;. There are only four elements of order 4 in A and G permutes
them. If a € A\ E and a® = a for some z € H \ A, then also z € Cg(A). In this case (x, A) is a maximal
abelian normal subgroup of G, contradicting the choice of A. We may assume further that H/A acts fixed-
point-freely on the elements in A\ E and hence is a group of order at most 4. Assume that H contains a
subgroup K = (a) x (b) with |a| = |b| = 4 and (a,b) = a®. The subgroup K is normal in G, since it contains
E > G'. By [22, Theorem B|, we have G # H. Let g € G\ H. Then g permutes the involutions in K and
has at least one orbit of size 2 on E#. However, this is not the case because there are no square roots of the
element a? o b in K and g fixes a2, which is the only nontrivial commutator in K. This is a contradiction.
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If h € H\ A, then (a, k) is a subgroup of G of order at most 16, which is nonabelian and not of the form
(z) x (t) with z* = t* = 1. It follows that in this case (a,h) ~ Qs. If y € H\ A and (a,y) =~ Qg, then
(hoy,a) =1, which gives the unique possibility |H : A| = 2 (recall that H acts fixed-point-freely on 4 \ E).
Let H = (a,b) X (c), where (a,b) ~ Qs, |¢| = 2 (see the above discussion). If G = H, the theorem is proved.
Assume that G # H and d € G\ H. Since d permutes the involutions in H nontrivially and a2¢ = a2, we
have ¢? = a® o c. Since A = (a) x {(c) is normal in G, a® = a o z for some z € E. Since d* € A, we have
a=a? =aloz8 =ao0z02% and z = 2. It follows that either a? = a or a? = a(~V. For the same reason
b? = b or b~V. This implies that G’ C (a,b), so that |G| = 2 and d? € {a?). Therefore G/G’ is elementary
abelian. It follows from [13, Satz I11.13.7] that G is a central product Ds * Qg or Dg * Ds. The second case
cannot occur since this group contains an elementary abelian subgroup of order 8 (see [13, Satz III,13.8]).
This implies that G ~ Qg * Dg =~ Q5 * @3, and so the theorem is proved in the case |A| = 8.

Now we will consider the case A =~ Z, x Zy = (a) x (b). Prove that H = C¢(E) = G. If g € G\ H, then
g induces an automorphism of order 2 of A and acts nontrivially on E. Without loss of generality, we may
assume that g™ 0a?0g=10% and g""Y 0 b2 0 g = a®. Then gV oaog=boe with e € E. Hence

(goa)!=goaogoa=g2ogtVoaogoa=g?ceoa’ob.

Since g? € E, this implies (goa)* = b? # 1 and goa has order 8, a contradiction. Now we may apply a result
of Ustyuzhaninov [22, Theorem B] (see also [16]), and the theorem is proved. (]

It will be proved in Sec. 4 that all groups in Theorem 3.1 occur as adjoint groups of some nilpotent
2-algebras.

Corollary 3.1. Let R be a nilpotent p-algebra with dim R > 3 for p > 2 and dim R > 6 for p = 2. Then the
adjoint group R° contains an abelian subgroup of rank at least 3.

Theorem 3.2. Let R be a nilpoient p-algebra with p > 2 whose dimension is at least p(p + 1)/2. Then R°
contains an elementary abelian p-subgroup of rank p.

Proof. Assume that there exists a nilpotent p-algebra of dimension at least p(p + 1)/2 whose adjoint group
has no elementary abelian p-subgroups of rank p. If ¥(R) > p + 1, then R contains a power subalgebra L
with dim L > p. If there exists in R a power subalgebra of dimension n, then by [2, Lemma 5.1] it has a
subalgebra with elementary abelian adjoint group of rank r > n(p — 1)/p. Hence if r < p, then we have
n<p+1+1/(p—1). It follows that every power subalgebra of dimension p + 1 contains a subalgebra
with an abelian adjoint group of rank p. Hence dim L = p. Since dim R > p(p + 1)/2 > p + 1, there exists
a subalgebra S of R which has dimension dimL + 1 and L C S. Since in the case p = 3 the theorem
is obviously true, we may assume that p > 3, dim R > 6, and by Theorem 2.2, S° contains an abelian
subgroup of rank dim L. Thus, we obtain a contradiction. Hence we may assume that »(R) < p and so G is
a group of exponent p. Assume that A is a maximal abelian normal subgroup of G. Let k = log, |A|. Since
Ce(A) = A, it follows that G/A C GLi(p) ~ Aut(A). Thus, the order of G/A is at most p**~1/2. Now we
have (k2 +k)/2 =k(k—1)/2+k >dim R > p(p+1)/2 and k > p. This contradiction proves the theorem. [

It is easy to construct for p > 2 a p-algebra of dimension 2n + 1 that has no subalgebras of dimension
n + 2 with an elementary abelian adjoint group. To see this consider an extraspecial p-group of order p?"+!
of exponent p and use a theorem of Kaloujnine [15].

A Miller-Moreno p-group is a nonabelian p-group all of whose proper subgroups are abelian (see [13]).
The structure of such groups is well known and can be summarized as follows (see [13, IL7]).

Lemma 3.1. (i) Let G be a finite p-group. If G is a Miller—Moreno group, then G is isomorphic to one of
the following groups:
(a) G = (a) x (b) with o] =p™, |b| =p* =1, and (a,b) =", m>1,n>1;
(b) G = ({a) x () x (b) with |a| =p™, |b| =p", |c| =p, m,n 2> 1, and (a,b) =c, (a,c) = (b,c) = 1;
(c) G =~ Qs, a quaternion group of order 8;
(ii) G is a Miller-Moreno p-group if and only if d(G) = 2 and |G'| = p;
(iii) G is a Miller-Moreno p-group if and only if ®(G) = Z(G) and |G : Z(G)| = p®.
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The following theorem describes the Miller-Moreno groups that occur as adjoint groups of some nilpotent
p-algebras.

Theorem 3.3. Let G be a Miller—Moreno p-group that is the adjoint group of some finite nilpotent p-algebra.
Then one of the following assertions holds:

(i) G is a metacyclic 2-group of order at most 16;

(ii) G is isomorphic to a group of type (b) in Lemma 3.1 withm <2, n < 2, ie., |G| < 2° and exp(G) < ¢;
(iii) G is a nonabelian p-group of order p* and of exponent p.

Proof. First let p > 2. Then it follows from Lemma 3.1 and Corollary 2.1 that there are no nonabelian
metacyclic p-groups that are adjoint groups of some nilpotent p-algebra. Hence we may assume that G is a
group of type (b) of Lemma 3.1. This group has no elementary abelian subgroups of rank 4. Hence if p > 3,
then each maximal subalgebra of R (with R° = G) has dimension at most p+1 (see Corollary 2.3). However,
r(R°) > 3 for each p > 3 if »(R) > p and by Corollary 2.3 we have v(R) < p, i.e., G has exponent p. Hence G
is a group of type (iii). If p = 3 and G is not a group of exponent 3, then the maximal commutative subalgebra
of R has dimension at most 4 and so 4 < dim R < 5. If ¥(R) = 4 and dim R = 4 or »(R) = 5 and dim(R) = 5,
then Theorem 2.2 gives a contradiction. Hence v(R) = 4, dim R = 5. In this case, R° = G ~ (Zg X Z3) % Zy.
If J is an ideal of R of dimension 1, then'R/J has either a metacyclic adjoint group or a Miller-Moreno
group of order 81. By Corollary 2.1 and the above discussion we obtain a contradiction. Hence p = 2 and
G = ((a) x (¢)) x (b) with |a] = 2™, |b| = 2", |c| = 2, and (a,b) = c € Z(G). By [2, Lemma 5.1], we have
(v(R) — 1) < 2r(R°) < 6. Hence v(R) < 7 and m,n < 3 in each case.

Assume that R is a minimal counterexample to Theorem 3.3. If J is an ideal of dimension 1 of R, then
the adjoint group of R/J is R°/J° (see, for example, [21]). If.J° = (c) is a commutator subgroup of G,
then G/{c) is a metacyclic group and by Corollary 2.1 we have |G/(c)| < 16. If, also, G/{c) is a group of
exponent 8, then R/J is a power algebra, hence R is commutative, which is not the case. Therefore, if J° is
a commutator subgroup of G, then the theorem is true. Thus we may assume that J° does not contain the
commutator subgroup of G. On the other hand, the adjoint group of R/J is also a Miller-Moreno group.
Hence we may assume that dim R < 6. Since v(R) < dim R with the equality only for algebras having a
power subalgebra of codimension 1, by Theorem 2.2 we may assume that v(R) < dim R—1. Hence v(R) < 5.

Consider the case m = 3 and n = 1. Then dim R = 5 and since v(R) > 4, we obtain a contradiction.
Hence we may consider the case m =3, n = 2, and since G has an element of order 8 it can be assumed that
v(R) = 5. Here G = ({a) x {(c)) x (b) = (Zg x Zy) ¥ Zg with a® =b* =% = 1, (a,b) = c € Z(G), and a* # 0
in R, b* = 0 in R. There are just two possibilities for the Jordan decomposition of R into cyclic subspaces
corresponding to the action of a as an operator on R:

R={(a)) ®(d) ®(b), ba=da=0 (*)
with dim(b) = dim{(d) = 1 and
R = {{a)) & (ba,b), ba®=0 (%)
with dim(b, ba) = 2.

Consider first the case (*). Since every subalgebra of R is commutative and R = ({a, b)), we may assume
that d € S, where S is a maximal subalgebra containing a. Hence da = ad = 0 and ba = 0 # ab. Since S is
an ideal of R, we have

b% = Aa + Aaa® + Asa® + M + Aod,
where \; € GF(2), 0 < i < 4. From b%a = ab® = 0 it follows that A\; = Ay = A3 = 0. Hence b* = Asa* + Aod.
Since ab,a € S, which is commutative, we have a®b = aba = 0 with ab = fBia + 5202 + B3a° + Bua’ + Bod,
where 3; € GF(2),0 < i < 4. It follows that 8y = B2 = 33 = 0. Hence ab = fBa* + Bod, b* = Aa* + \od
(A = Ay, B = B4). Assume that By = 0. Then ab = Ba* € Ann(R) and {(a?)) = J is an ideal of R. Modulo
J the algebra R is commutative, contradicting the structure of its adjoint group. Hence G = 1. If Ay =0,
then b? € (a,a? a*) and 5 = Aa* implies (b — Aa?)? = 0, which is not the case. Hence ab = Ba* + d and
b% = Aa* + d. It follows that d = ab + Ba* and b? = (A + B)a* + ab, which implies 4°> = 0 and bd = 0. Hence

(Ba* +d)b = (Ba* +d)a =0, z=][a,b] € Ann(R).
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Now R/{{z)) has a metacyclic adjoint group Zg x Z,, which is impossible by Corollary 2.1. Therefore, we
may now consider the second case:

R = ({a)) ® (b, ba), a®=ba®=0, a*#£0, v =0. (%)

Since ba € Ann({(a)) and Ann({a)) + ({(a)) # R, we have ba € S, which is maximal in R. Now S has a basis
{a,a?,a®,a* ba}. Since b* € S, we have

b® = Aa+ Aoa® + M3a® + M\ga® + Xoba, N €GF(2), 0<i<4

Since b%a? = b(ba?) = 0, we have \; = A2 = 0 and b* = A3a® + M\sa* + Aoba. Since b* = 0 and b%a = Aza?, it
follows that ba? = 0 = a2, b? = aa® + Ba® + yba (@ = A3, B = Ay, ¥ = Ao) and b%a = aa?. Since ab € S, we
have

ab = pya + pea® + pza® + paa* + poba, p; € GF(2), 0<i<4.

Using the relation aba = ba® = 0, we obtain p; = ps = 3 = 0 and ab = pa® + yoba, where p = py. If
po # 0, then [a,b] = ab — ba = pa* € Ann(R) and R/((a*)) is a commutative algebra, which is impossible.
Hence o = 0, ab = pa*, and 8 = aa® + Ba* + ~ba. Since ab? = #2a, (ab)b = pa*b = 0. However, b%a = aa.
Therefore, a = 0. We have ab = pa?, b%a = 0, and b* = §++ba. Since b?a = 0, b = 0 and ab—ba = pa* +ba.
It is easy to see that ba € Ann(R) and a* € Ann(R). Hence z = [a,b] € Ann(R). As before, this leads to a
contradiction. Thus this case is also impossible, and the theorem is proved. a

It is easy to show that if a noncommutative nilpotent p-algebra R of finite dimension has two maximal
commutative subalgebras, then R° ~ ({a) x {c)) % (b) x A, where " =b" =" =1, (a,b) =, and A
is an abelian group or R° ~ M x A, where M is a Miller-Moreno group and A is an abelian group. Hence
Theorem 3.3 shows that the case A # 1 occurs very rarely. Below we construct an algebra R that has two
commutative maximal subalgebras and its adjoint group has prescribed Miller—-Moreno factor M.

The next theorem is perhaps surprising.

Theorem 3.4. Let R be a finite nilpotent p-algebra (p > 2) whose adjoint group has only two generators.
Then either R° is a metacyclic group or R° is a nonabelian p-group of order p® and of exponent p. In each
case, dim R < 3.

Proof. Consider the chain R D R? D R®... D R* = 0, where k — 1 is the nilpotency class of R. Since
R has two generators, |R/R? = p®. Since R?/R3 is contained in the center of R/R3, the algebra R/R? is
either commutative or the adjoint group (R/R®)° is nilpotent of class 2. Consider a factor algebra R/R‘*H!
such that the algebra R/R® is commutative and R/R‘*! is noncommutative. Without loss of generality, we
may assume that R*1 = 0. Then R has two generators a, b that are also generators of R°. Since G = R° is
a group with two generators a, b and (a,b) € Z(G), we have G’ = ((a,b)) and the group G/G’ is metacyclic.
It follows that the rank of G is at most 3. Consider first the case p > 3. By Corollary 2.3, dim A < 3 for
each maximal commutative subalgebra A of R. Hence the order of any maximal abelian subgroup of G is
bounded by p® and each nontrivial element of G is of order p. Since d(G) = 2 and G’ C Z(G) is elementary
abelian, G is a Miller-Moreno group and by Theorem 3.3 dim R = 3. Assume that p = 3 and (R/Rf)° is
not elementary abelian. This case can occur only when R/R® is a power algebra by [12], but then R is a
commutative algebra. Hence (R/R*)° is an elementary abelian p-group in each case and G is a Miller-Moreno
group. By Theorem 3.3, dim R = 3 and i = 2. Now we may assume that R® # 0 = R%. Since dim R/R% =3
by the previous discussion, we have dim R?/R® = 1. By [15, Lemma 1.6.1], it follows that R? C Z(R). Then
R3® =0, a contradiction. The theorem is proved. O

4. Nilpotent p-Algebras of Small Dimension

Nilpotent p-algebras of small dimension have been studied for a long time. A list of those of dimension
4 was given by Allen [1] with corrections by Ghent [11]. The description of these algebras can be found in
Kruse and Price ([15]) (see also Scorza {19]).

It seems that so far no attempts have been made to determine the structure of the adjoint groups of
these algebras. One of the difficulties is that similarly defined algebras can lead to adjoint groups with
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different structure (depending on the characteristic of the field). For instance, the adjoint group of a p-
algebra determined by the laws 23 = 0 and ab = ba for all z,a,b € R can be isomorphic to Z, (if p = 2) or to
Z, X Zy, (if p > 2). A list of all p-algebras of dimension 5 is contained in the dissertation of Boyce [8], and a
bibliography can be found in [15]. We will describe here all nonisomorphic finite p-groups that can occur as
the adjoint group of some nilpotent p-algebra of dimension less than or equal to 5. In Theorem 4.3 we give a
complete description of the groups of class 3 that can occur as an adjoint group of some nilpotent p-algebra,
indicating only for p = 3 the general properties of groups of class 2 that occur as an adjoint group, because
the complete description would long. It is interesting to compare this list with the list of groups of class 3 of
order p® that can occur as an adjoint group of some nilpotent p-ring obtained by Tahara and Hirosi [21] for
p > 2. Note that for p = 2 we have been able to find all 2-groups of order 2° that occur as adjoint groups of
some 2-algebras.

Theorem 4.1. Let G be the adjoint group of some nilpotent p-algebra R. If dim R = 3, then ezactly one of
the following holds:
(i) G=Z, x Z, x Ly;
(ii) G is a nonabelian p-group of exponent p and order %
(iii) G = Zp x Z, (p < 3);
(iv) G = Dg or Qs (a dihedral or a quaternion group).

Proof. This is an easy consequence of the description of these algebras in [15, Theorem 2.3.6]. a

Theorem 4.2. Let G be the adjoint group of some nilpotent p-algebra R. If dim R = 4, then exactly one of
the following holds:
(1) p>2 G= X xZ, with a group X isomorphic to the adjoint group of some nilpotent p-algebra of
dimension 3;
(ii) p =3, G = X x Z3, where X is a metacyclic Miller-Moreno group of order 27,
(i) p=2, G is a group of class at most 2 and of exponent at most 4;
(iv) p.=2, G=Zg X Z,.

Proof. By Corollary 2.1, we may assume that G is not metacyclic. It follows from Theorem 2.2 that
v(R) < 4. If v(R) < p, then G is either an elementary abelian p-group or a nonabelian group of exponent p.
It follows from Theorem 3.4 that the algebra R can have an adjoint group G with two generators (p > 2) if
and only if dim R < 3. Hence we may assume that d(G) > 3 and by Burnside’s basic theorem |G/®(G)| > p3.
This implies |G’| = p in the noncommutative case. It follows from the description of the groups with Frattini
subgroup of order p (see [13, Satz II1.13.7}) that G & X x Z,, where X is a nonabelian p-group of order p*
or is a central product of a nonabelian group of order p® and a cyclic subgroup of order p?. Since v(R) < 4,
this case can occur only for p < 3. Assume that p = 3 and G is not an abelian 3-group (if G is abelian and
|®(G)| = 3, then G = Zg x Z3 x Z3). If the exponent of G is not 3, then v(R) = 4 and R contains a power
subalgebra L of codimension 1. From Theorem 2.2 we obtain that this is case (ii) of Theorem 4.2. Assume
now that p = 2 and G is not an elementary abelian 2-group. By a theorem of Tausski (see [13, Satz I11.11.9]),
if |G : G'| = 4, then G is a metacyclic 2-group. By Corollary 2.1, this leads to a contradiction. Hence
|G/G'| 2 8. If d(G) = 2 and G is a nonabelian group, then it is a Miller-Moreno group by Lemma 3.1(ii),
and so by Lemma 3.1(i) and Theorem 3.3 we have the required conclusion. Therefore d(G) > 3 and G’ = ®(G)
has order 2. In this case, G is a group of class 2 and of exponent-4. The abelian case gives no difficulties.
The theorem is proved. O

Theorem 4.3. Let G be a nonabelian adjoint group of some nilpotent p-algebra R of dimension 5. Then one
of the following holds:
(i) G is p-group of class 2 and of exponent p;
(if) G is one of the following groups of class 3:
(a) G= X xZ, (p > 3), where X is a p-group of mazimal class of order p* with exp(X) = p forp > 3;
(b) G = (a,b,c,d,e) (p > 3) with relations » = =df = e? =1, (d) = Z(G), (a,b) = e, (e,a) = d,
(,¢c) =d, (a,c)=1,aP=d" (n=0 i p>3 andn € {0,1} if p = 3);
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(c) G = (a,be,c) (p=3), wherep* = a® = ¢ = € =1, (a,¢) = 1 = (e,¢) = (e,b), (a,b) = ¥
(e {L,-1}), (:b) = a° = (a,e);
(d) G={(a,b,c) (p=2),a*=bt=3=1, (a,¢) =1, (a,b) =¢, (b,c) =a?;
(iii) G is a p-group (p < 3) of class at most 2 and of exponent <p* such that G' is group of order <p® and
®(G) < Z(G) is an elementary abelian p-group.

Proof. Assume that v(R) > p. Since ¥(R) < dim R + 1 and »(R) = dim R + 1 only for power algebras, we
may assume that v(R) < dim R. The case where equality holds is described in Theorem 2.2. Hence we may
assume that ¥(R) < dim R — 1 = 4 in each case.

Consider first the case p = 2. Since ¥(R) < 4, G is a group of exponent 4. By a theorem of Tausski
(see [13, Satz II1.11.9]) and Corollary 2.1, we have |G : G’| > 23 and |G'| < 4. If || = 2 and d(G) = 2, then
by Lemma 3.1 G is a Miller—Moreno group and Theorem 3.3 gives the required assertion.

If |G| = 2 and d(G) > 3, then &(G) < Z(G), which also gives condition (iii) of the theorem. The same
is true if ®(G) < Z(G) is an elementary abelian group and |G'| = 4. Hence we may assume that either
®(G3) £ Z(G) or ®(G) is not an elementary abelian 2-group.

We shall prove that G’ is an elementary abelian 2-group. Assume that G’ is a cyclic group of order 4. If
G/G' is elementary abelian, then (a,G’) is a group of order 8 that has a cyclic subgroup G’ of index 2. Since
G has no elements of order 8, we have a® € ;(G’). This implies that G/Q;(G') is an elementary abelian
2-group and G’ < Q;(G’), which is a contradiction.

Therefore, the group G/G’ is not elementary abelian, and so G/G’ & Z4 x Z,. It is clear that G has two
generators a, b such that at least one of them, say b, is in the centralizer of G'. If (G’,b) is a group of order
8, then we may take b of order 2. This implies

1 = (a,b?) = (a,b) o (a,b)’ = (a,b)?,

and G is of order 2, which is impossible. Finally, if (G’, ) is a group of order 16, then at"" oboa = bo (b, a)
and (ao b)* = ((aob)?)? =a*ob?o(b,a)? = (b,a)? # 1. This is a contradiction.

Hence G' is an elementary abelian 2-group. If &’ < Z(G) and d(G) = 2, then G = (a, b) with (a,b)? = 1,
(a,b) € Z(G), and by Lemma 3.1 G is a Miller-Moreno group.

Therefore, if G' < Z(G), then d(G) > 3 and |G/®(G)| > 8 by Burnside’s basic theorem. It follows that
G = ®(G) < Z(G), and we are done.

Consider now the case G’ £ Z(G). Since |G'| = 4, H = Cg{G’) has index 2 in G. If an element
a € G\ H induces an automorphism of H of order 2, then for each A € H we have (h,a) = h(-!) o A% and
(hya)* = ()~ o h#* = (A(=D o h%)D) = (h, @)D,

Since each element in G’ has order at most 2, we have (H,a) < Z(G). On the other hand, H' < Z(H)
and since |H| = 16, it is clear that also H' < Z(G) (if H is nonabelian, then it is either a Miller-Moreno
group or |®(H)| = 2).

Hence there are no involutions in G \ H, H is nonabelian, and a®> € H \ Z(H) for each a € G \ H.
Moreover, Z(H) > G’ is noncyclic. Since H = Cg(A) is a subalgebra of R with dim H = 4, we may use
Theorem 4.2. Let z,y be noncommuting elements in H. If (z,y) > Z(H), then (z,y) = H is a Miller-
Moreno group of order 24, satisfying the restrictions on H. It is easy to see that this is a group of the form
({z) x (2)) x (y) with z* = 22 = y®* =1 and (z,y) = 2z € Z(H). Since G’ = (z?) x (2), it follows that the
subgroups (z) X (z) and (z?) are normal in G. Hence (22, a) = 1 for each a € G. On the other hand, (z) = H’
is normal in G and (z,a) = 1 for each @ € G. In this case G’ < Z(G). We may assume now that (z,y)
does not contain the center of H. Since (z,y) is a nonabelian group, it has order 8 and H = (z,y) x (z) for
some element z of order 2 in G’ < Z(H). If (z,y) is a quaternion group, then all involutions in H lie in its
center. This is impossible by the above. Hence H = Dg x Z,. Without loss of generality, we may assume
that a? =z € H\ Z(H) and y is an element of order 4 in H, z € G'\ ({z,y) NG’). Then ({y) X (z)) x {(a) =G
and a2 o y o a® = yV. Since (¥? a) = 1, a permutes the involutions z and y?z, i.e., aV oz0a=z07y% It
is clear that a"Y oyoa & (y). Therefore a"V oyoa =yoz or yozoy® We may denote the element (y,a)
by z and then G is a group of type (ii) of the theorem. We show now that the algebra R with the adjoint
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group of this form really exists. Let R be a matrix algebra consisting of all matrices over GF(2) of the form

0O a B v d A
000 a0 O
000 0 a B+7v
000O0O0C O
00000 «a
0 00O0O0 O

Then R° = G has the required structure.

Let p > 3. By Corollary 2.1 and Theorem 2.3, if R* # 0, then G is one of the groups of Theorem 4.3.
Hence R* = 0. On the other hand, d(G) > 3 by Theorem 3.4, so in each case |G'| < p? by Burnside’s basic
theorem. There are two possibilities: G' £ Z(G) and G' < Z(G). The latter gives us conclusion (i) or (iii) of
Theorem 4.3. Hence G' £ Z(G) and |G'| = p®. By [15, Lemma 1.6.10], if |R? : R%| = p, then R? < Z(R) and
G' < Z(G), which is not the case. Hence [R? : R3| = p? and dim R3 = 1. Thus there is a basis a, b, ¢, d, e of
the algebra R, such that d € R®, {c, e,d} is a basis for R?, and a,b € R\ R Since |G'| = p?, H = Cx(() is
a subgroup of G of index p and a is a subalgebra in R of codimension 1. We may assume that b € H. Note
that d € Ann R and R? is generated by elements ab, ba, a2, 4%, and d. Since R* =0, R? is a null algebra and
in particular e? = ¢ = d*> = 0. Since zc,ze € R® for each z € R, {{u,d)) is an ideal in R for each u € R2. If
H is a commutative subalgebra, then |Z(G)| > p?, since by Theorem 3.4 d(G) > 3 and Z(G) # G’ since G
is assumed to be of class 3. Now it is easy to obtain the required relations for G (provided the exponent of

H is p):
G = (z,y,71,22,a)  with relations (z,a) =y, (y,a) =21, (2,a)=(z,a)=1, a°=1,
and (z,y, ), 22) is an elementary abelian p-group. We need to show that there exists a nilpotent p-algebra

R with required adjoint group G. This group is a direct product of a p-group G; = (z,y) and (z). Consider
the set of 6 x 6 matrices with coefficients in GF(p) and of the form

0 a B v A )
000 —a -8 A
000 0 o a+y
000 O O 8
000 O O -
000 O O 0

Obviously the set of these matrices is an algebra of dimension 5 containing a basis {a, b, ¢, d, e} that satisfies
the relations ab = —e, ba = e+d,ae =d,ea = —d, eb=be =0,ac=ca =0, bc = d = ¢b, a2 = —¢, and
b% = 0. It is easy to see that the adjoint group of this algebra is G.

If H is commutative but not elementary abelian, then p = 3 and there exists an element b € H such
that b* # 0. By Theorem 2.2, we may choose a basis in H of the form {b, %, b% ¢} with cb = bc = 0. By the
above discussion, ((b®)) = R® is an annihilator of R and {b?,b3,¢} is a basis for R%. Let a € R\ H. Since
a? = (1% + Bab® + Bac, ab = aib? + aob® + ase, ba = 11b? + 120 + y3c (e, B, 7k € GF(3)) and ab,ba € H,
we have b%a = b(ba) = (ba)b = b(ab) = ab® = (ab)b. This implies that b%a = ,6° = ab® = yb® and oy = 7.
Now it is clear that G’ = ((b%,¢)) and ((¥?,0%)) = Z(G) (recall that G’ £ Z(G)). It is possible to describe
the structure of the adjoint group G of this algebra. The group G has generators a,b,c, and d such that
P=c3=d=1,a*=0%, (b°c) =G and (b,a) = ¢, (¢,a) =4, (a,d) = (b,d) =1, or (b,a) = ¢, (c,a) = b°,
(a,d) = 1. But (b,boc,d) = H in the first case and then G = (a,b), which is impossible. Hence there is
only one possibility (up to the choice of notation): G = (a,b,c,d) with (b,a) =¢, (¢,a) = @, u e {1,~1},
(d,a)=1and G = ((b) x {c)) x {a) x (d); b = =d® =1, a® = b(®) | § € GF(3)*. This case really occurs
since there exists an algebra R of 6 x 6-matrices with coefficients in GF'(3) whose adjoint group is isomorphic
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to G. These matrices have the form

0O apBgdéd v A
000 a -8 —
0008 a ¢
0000 0 B
0000 0 «
0000 O O

It remains to consider the case H = Cg(G’), where H is a nonabelian group. We have the following two
possibilities:

(a) there exists an element b € H such that b* # 0;

(b) 2z = 0 for each r € H.

In case (a) there exists a basis {b, b%, b3, c} of the subalgebra H such that cb = 0, be = b3, and ¢ = 6§83,

5 € GF(p) (see Theorem 2.2). Since R* = (R?)? = 0, it is clear that ¢ = 0. Therefore cb = 0 = ¢,
be = b°, and Z(H) = {(b?,b%)) = G’ is an ideal in R. This forces that R/G’ is a commutative algebra and
[a,b] = —ba + ab € G', so that we can write

ab = aic+ ab? + azb®, - ba = aic+ Bob® + Bb° (v, B; € GF(p)).

On the other hand, ({c, %)) is also an ideal of R. Hence R/({c,b%)) is a noncommutative 3-dimensional
algebra. By [15, Theorem 2.3.6], we may assume that b = ba (mod ((c,b*))) and ab = 0 (mod ({c, 5%))).
Thus ab = ayc+ a3, ba = ajc+ b2+ Bsb%, be = 8%, cb = 0, ac = A\b?, and ca = ub® for some \, u € GF(p).
Using these relations, we obtain ab® = (ab)b = 0, b%a = b(ba) = ajbe + b® = (o + 1)b%, and (ba)b = bab =
aich + b = b(ab) = arbc = b, Hence oy = 1 and we can rewrite our relations in the following form:
ab = c+ab® ba = c+ b2+ B, bc = b3, cb = 0, ac = Ab®, ca = ub®, ab® = 0, and b%a = 2b3, where
a = as, B =P, and bab = b%. It is easy to see that a?b = ac = Ab® and ba® = ca + b%a = (u + 2)b°.
Obviously a? = yi¢ + 2% + 3%, where 71,792,773 € GF(p). Since a?b = A\b® = a2b = ycb + 1ab® = 103,
72 = A. On the other hand, ba® = ca + b%a = (u + 2)b> = b- a® = y1bc + 72b® = (11 + 12)b°. It follows that
a? = (u— A+ 2)c+ Ab? + vb® with ¥ = 3. Since aba = ab-a = a - ba, aba = ca = ac+ ab? = ac = \b® = pub®
and A = p. Thus a? = 2¢c+\b% +7b° and the equality a-a? = a®-a = a® implies a® = 2ac+ \ab? = 2ca+ \b?a,
50 Aab?® = Ab%a = 0 = 2\b3. This forces A = 0. Finally ab = ¢+ ab®, ba = ¢ + b* + Bb%, be = 53, ¢b = 0,
ac =ca = 0, ab®> = 0, b%a = 2b%, and a? = 2c + yb%. If p > 3, then the adjoint group of this algebra has
generators a, b, ¢,d,e with the relations a? = 0 =P = d? = e? = 1, d € Z(G), (b,a) = ¢, (e,a) = d, and
(b,¢) = d. One example of an algebra of this kind is given by all 6 x 6-matrices with coefficients in GF(p) of

the form
0 a B ¥ ) A
00 0 20+ 0O 0
00O a a+fB ~v+6
000 0 0 0
000 0 0 20+ 3
000 0 0 0

If p = 3, then the adjoint group of this algebra has generators a,b,c, e with relations »* = ¢ = €3 = 1,
(b,a) = e, (e,a) = b3V, (b,c) =b°, X € GF(3)*, b° € Z(G), and a® € (b%).

Consider now case (b). There are no additional cases if p > 3 or if exp(G) = p since the structure of
a group G having a subgroup H of order p* and of exponent p is completely determined if we know that
G' = Z(H) (see [5], this is a group of type 40 in this list). But we have already shown the existence of such
a group as the adjoint group of an appropriate algebra. Hence we will assume that p = 3 and G is not a
group of exponent 3. In this case, also z* = 0 for each z € H and there exists an element a € R\ H such
that a® # 0 = a*. Obviously, there exists a maximal noncommutative subalgebra L of R containing a. By
Theorem 2.2, L has a basis {a,a?,a3, ¢} such that ac = 0, ca = a® and ¢® = da® for some § € GF(3). An
element b € H \ L satisfies b* = 0. As above, R? = {a?,a%,c} and R? is a null algebra, so that § = 0. Since
G' £ Z(L), e = Ma® + ¢ € G’ for appropriate A € GF(3) and G’ = ({e,a®)) C Cg(b) for b € H\ L. Since
b?> € R? and R? is a commutative subalgebra of L, ({b,Cr(d))) is also a commutative subalgebra. Moreover,
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it ‘has dimension at most 3 since there are no commutative subalgebras of codimension 1 in R. It follows
that C(b) = G’ and b* € G'. Since (' is an ideal in our case, R/G’ is a commutative algebra of dimension
3, having power subalgebra ((a + G')) of codimension 1. By (15, Theorem 2.3.6], we have ab = ba = 0
(mod G') and b? = 0 (mod G'). Hence ab = aye + aza®, b? = vie + 7242, and ba = Bye + Bra® for some o,
b, v € GF(3), 1 <i,5,k < 2.

Note that ae = Aa® and ea = (A + 1)a3. If y; # 0, then 5 = 0 implies eb = be = 0. Since ab? = (ab)b =
(a,e + aga®)b = aeb + a2a®h = 0 in this case, ab® = y;ae = y;Ma® = 0 and A = 0. For the same reason,
b’a = 0 and b% - a = mea = (A + 1)a®, which implies A + 1 = 0. This is a contradiction, and y; = 0,
b? = va®, where v = ;. In this case, also be = eb = ga® for some o0 € GF(3). Therefore 5 -a =a - b% = 0.
On the other hand, ab? = o eb = Bibe = ayoa® = Bioa®. If ¢ # 0, then o; = B = 0 and ab — ba € Z(R),
which is not the case. Thus be = eb = 0 and ab? = b%a = 0.

Since ab-a = a-ba, ajea = Prae = a1(A + 1)a® = PAa®. This forces that a;(\ + 1) = B\ and
(a1 — B1)X # a1 = 0. Note that ay # [, since ab — ba = [a,b] € Z(R). Consider possible types of groups
with this structure. By Theorem 4.2, the subgroup L° has the following structure: L° = ({a) x {e)) X (¢},
where (€) X (a®) = G', a® = €3 = = 1. An element b € G\ L° has order 3 and b centralizes (a®) x (e} = G.
Since (a) % (¢) = K is normal in G, (a,b) = e, for some e; € K of order p. Without loss of generality, we may
assume that e; = e. Hence it remains to describe the action of b on ¢. Since Z(L°) = (a®) x {c) is normal in
G, 50 (c,b) = a® for some o € GF(3)*. This forces (c?,b) = a®%), and we may assume that (c,b) = a® for
some element ¢ € Z(L). Thus (a,b) = ¢, (6,0) =1, (c,b) =a®, ®* =a® =2 =€ =1, and (a,c) = 1 = (¢, ¢).
Thus, the structure of G is completely determined. On the other hand, the 3-algebra R of 6 x 6-matrices
over GF(3) of the following form has the required adjoint group of class 3:

d A
B y-4¢
0 0
0 a-
0 0
0 0

OO O OO O
OO0 OOR
OO0
OO0 OR R

In [21], the p-groups of order p® and of class 3 that are the adjoint group of some nilpotent p-ring R are
determined. These are the groups of types 4, 5, 19, 204, 21, 40, 41, and 54 in [5]. It follows from the above
theorem that the only groups of types 4, 19, 20,, 40, and 41 are the adjoint group of some nilpotent p-algebra
and the types 19, 20;, and 41 occur only for p = 3. 0

5. Some Special Nilpotent p-Algebras

In this section, we will present some examples and constructions for nilpotent p-algebras.

Example 5.1. Let R be a commutative nilpotent matrix algebra over the field F, consisting of all matrices
of the form

0 oz oz -+ oum

0 0 o3 -+ oom

0 0 O 0

If R contains a matrix of the form
010 - 0
001 . 0
a=1] .o, ,

000 1
000 - 0
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then

0 a g - ]
0 0 ao --- 04
R=<{| ..coovin.... a,B,v...€ F},
000 -+ «
000 -0

and R is called a triangularly striped matrix algebra [20]. It is clear that the set of all triangularly striped
(m+1) x (m+1)-matrices over F' is a commutative nilpotent algebra over F' of dimension m and of nilpotency
class m. Since a™*! = 0 # a™, this is a power algebra over the field F.

Example 5.2. Let R be a set of all matrices of the form

0a b
0 0 6(a)
00 O

with elements a,b in an algebra L over the field F' and an endomorphism 8 of the additive group of L. Then
R is a nilpotent algebra of class 2 over F that is commutative if af(c) = 6(c)a for each pair (a,c) € Lx L. For
example, if F = GF(2), L = GF(2™), and 6 is an automorphism of the field L, then we have an algebra R(L)
whose adjoint group A(m, §) is described in [14]. A particular case of this is a Sylow 2-subgroup of the Suzuki
simple group 2B,(2™). Since G = R° is a group that has an automorphism transitive on maximal subalgebras
(of codimension 1 in R), there exists a 2-algebra all of whose maximal subalgebras are isomorphic. Moreover,
each subgroup of the adjoint group of this algebra is a subalgebra (see, for example, [18]). These groups
are noncommutative and have rank m, while the corresponding algebra has dimension 2m. For p > 2 these
algebras give examples of algebras for which dim R = 2(r(R°)—), where r(R°) is the Priifer rank of R°. We
do not know whether such examples exist in the commutative case for p > 2.

The other series of examples occur if we take the field L = GF(g?) of characteristic p with an automor-
phism 8 of order 2 of this field. The set of matrices of the form

0 a b
0 0 —0(a)
00 O

with coefficients a,b € L is a p-algebra R(L) whose adjoint group contains a Sylow p-subgroup of a group
2A2(q) = Us(q). It consists of matrices satisfying the relations tr(b) + N(a) = 0 and N(a) = af(a). However,
the property tr(b) + N(a) = 0 is not inherited by the sum of matrices and it is possible to prove that the
Sylow 2-subgroup S of Us(q) is the adjoint group of some nilpotent p-algebra finding an appropriate ideal J in
this algebra over GF'(p) such that (R(L)/J)° is isomorphic to .S. Below we will describe another construction
that shows that every group of class 2 and of exponent 4 is the adjoint group of some nilpotent p-algebra.

Example 5.3 (see also [6]). We shall prove that every 2-group of class 2 and of exponent 4 is the adjoint
group of some nilpotent 2-algebra. The following property is crucial (see [6]): If G is a nilpotent group of
class 2 and of exponent 4, then ®(G) < Z(G) and is of exponent 2. Let G be a 2-group for which the above
property holds, z;,z,,... ,z4 be a minimal set of generators of a group G, and 2y, 23, ..., 2; be a minimal
set of generators of a group ®(G). Attach to G the vector space R =V @ W over F = GF(2), where V and
W are its subspaces of dimension d and & respectively. We consider a one-to-one map % : G — R given by
the following rule: if

&,
g =T 0% . 2% P P

i=1 :
and o;,3; € F(i < d,j < k). The multiplication in G determines two functions on R, a commutator
function (z;, z;) € ®(G) for each pair x;,z; in {z1,22,... ,z4} and the square map z; — z2 € &(G) for each
z; € {x1,%3,... ,Zq}. Define products of elements in R by the rule v;v; = 0if ¢ < j, viv; = ¥((z;, z;)) € W if
i > j, and v;v; = P(z;2) € W for each z;,z; € {21,22,... ,Z4}. Since the commutator and squaring function

d k
then ¥(g) = > av; + Y Byw;, where vy,vs,... ,vq is a basis of V and wy,ws,... ,wy is a basis of W
=1
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satisfy the well-known identities (a,b) = (b,a) (recall that G is a 2-group) and (a o b,¢) = (a,c) o (b,c),
(a0b)? =a? o b? o (a,b) for any a,b,¢c € G, we have Y((z 0 y)*) = ¥(z?) + ¥(y?) + ¥((z,y)) for each pair of
elements z,y € G. Moreover, [v;,v;] = v;v; — v;u; = ¥((x;, z;))- By linearity we obtain the multiplication on
R If

d k
u=Zaw,—+Zij,-, T—Z'y,v,+25w],

i=1 j=1 i=1
then wv = Z Z a;v;(viv;) and ¥ ([u,v]) = ¥~ (uv — vu) = (¥~ (u),¥ " (v)) for each pair of elements
=1 j=1
k
u,v € R. It is easy to find a matrix representation of an algebra R. If v,v; = > Bi;ws with 37; € F, then we
=1

have the matrices

01 (x'z) %1 121‘ .o ‘E
o) = | M) | = | Fa Pa e Fa
Ba(;) O e BY

where (%, are as above, and the elements x; are represented by matrices of the following form with 1 in

ij
0 --- 10 --- 0
0 --- 00 --- Oz) |-
0 --- 00 --- 0

position 1,7+ 1:
Thus, to z? and z;z; correspond to the following matrices:

(5%67) (5%")

respectively. By linearity we have determined all elements of a matrix algebra of dimension d + &k (which is
a subalgebra of a (d + k + 1) x (d + k + 1) matrix algebra), and they are of the form

(Fi)
0 9((1?) )
0 0

wherez € F¢ ~V andy € FF ~ W. Ifa:—Z)\v,, then f(x 2:/\4955l The adjoint group of this

algebra is isomorphic to G by construction. Note that these arguments are valid for infinite 2-groups of
exponent 4 as well.

O O8

Example 5.4. The same construction can be used to show that any p-group of class 2 and of exponent p is
the adjoint group of some nilpotent p-algebra provided p > 2 (see also [17]). The details are omitted. Note
only that it also leads to matrices of the form

0z vy
0 0 6(z) |,
00 O
where 6(z) is determined as in the preceding example. The last example is also interesting since it gives the

matrix description of all p-algebras (p > 2) each subgroup of whose adjoint group is a subalgebra [18].

Example 5.5. An interesting series of examples can be obtained by a generalization of Example 5.2. Let A
be a commutative p-algebra and 6,,6,,... ,6;_; be endomorphisms of its additive group. Define Ri(A) to be
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the set of all (k + 1) x (k + 1)-matrices with elements in A of the following form:

0 ay as ... ak
0 0 01 ((11) s 01 (ak_l)
0 0 0 9;3_1 (al}
0 0 0 0

Under suitable restrictions on the operators ¢; these matrices form an algebra. For example, if A = F =
GF(p™),8; = i, where §; = @ is a Frobenius automorphism of F, then Ri(A) is a p-algebra that contains a
power subalgebra of dimension k over GF(p). The dimension of Ri(A) over GF(p) is mk and its nilpotency
class is k.

Example 5.6. The adjoint group of the direct sum R = R; & R, of two nilpotent p-algebras R; and R,
with adjoint groups R} = G, and R§ = G respectively, is G = G; x Ga. If Ji, Jo are subalgebras of
Ann(R,) and Ann(R;) respectively and ¢ : J; — J is an isomorphism from J; onto J,, then the subalgebra
I ={j—¢()|j € )i} of R is contained in the annihilator Ann(R) of an algebra R. The quotient algebra
R/I is called the sum of subalgebras with joint subalgebra I ~ J; =~ J,. It is clear that the adjoint group
of this algebra is a central product G; * G with common subgroup I° ~ G1 NG, C Z(G;) N Z(G,). This
simple construction allows us to obtain new classes of algebras and their adjoint groups. For example, if
G = ({a) x (2)) x (b) is a Miller-Moreno group of order p* that is the adjoint group of a nilpotent p-algebra
R defined by relations a® = b? = 22 = 0, ab = —ba = z, then we obtain an algebra S whose adjoint group is
of the form
(@) x @) =) xA=H, [|z]=p" [yl=0" [t=p", [&yl=t"", 274" teZ(H)

and A is an abelian group.

Let Uy, Us, and U; be the power algebras with dimU; = p™ !, dim U, = p¥!, and dimU; = p* 1. It
follows from the above consideration that the element z of the algebra R is in the annihilator of R. We can
form the algebra By = R Uy @ U, © Us, where U; = ({w;)) (i = 1,2,3). It follows from Theorem 2.1 that
U? = C; x Y; with C1 ~ Zym, Cy 2 Zyk, and C3 = Zy». Moreover, C; contains the annihilator of U; for each
i < 3. Identifying the images of uy, u3, us, a, b, z in R; with these elements, we have that z = u; +a has nillity
p™ 1 +1, y = up +b has nillity p** +1, and [z, y| = [u1 +a,u2+b] = [a,b] € Ann(R@ U; @ Us). Next form an
algebra S = R,;/J, which is a sum of subalgebras R+ Uy + U, and U; with joint subalgebra ({z)) ~ ((uff,’"_l)).
It is clear that the subalgebra S generated by the elements x,y, and u3 has an adjoint group of the required
form.

Similar arguments show that for each Miller-Moreno p-group M there exists an abelian p-group A, such
that M x A is the adjoint group of some nilpotent p-algebra R.

Example 5.7. It is possible to show that the direct product of the dihedral group D of order 16 (or another
2-group of maximal class and of order at least 16) with any abelian 2-group A cannot be the adjoint group
of some nilpotent 2-algebra. On the other hand, for any p-group G of order p* with p > 2 and of exponent p
there exists a nilpotent p-algebra R of dimension 5 such that G x Z, is the adjoint group of this algebra (see
Sec. 4).

Example 5.8. The notion of a quasi-direct sum of rings was introduced in [9]. Let A and B be rings. A
ring R, written as AW B, is called a quasi-direct sum of A and B if the following conditions are satisfied:
(i) B is a subring of R;
(ii) A is an ideal of R;
(iii) R is a direct sum of A and B as additive groups.
Clearly, if R = AW B is a nilpotent or nil ring, then the adjoint group of this ring is a semidirect product
R° = A° x B° of the adjoint group of A and the adjoint group of B. This definition could be generalized in
order to determine external quasi-direct sums [9]. We present here a slightly weaker useful construction.
Assume that M is a ring that is also a right A-module. Define the ring R = M?& A in the following way:
R = (M?, A) = {(m1, mg, a)|mq, my € M, a € A} with (my,ma,a) = (m),m},a’) if and ounly if m; = m},
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mg = m4, and a = a’. The operations in R are defined by the laws
! ’ A ! ’ R 4
(mq,ma,a) + (M}, my,a") = (mq + myj,ma + ms,a +a),
7 ! ' ! ! !
(m11m2?a) (ml’m27 a ) = (m1m17m1m2 + mea, aa)

It is easy to see that all ring properties are satisfied. If M and A are nilpotent rings of nilpotency class
n(M),n(A) respectively, then R is a nilpotent ring of nilpotency class at most n(M) + n(R) + 1. This
construction can be expressed symbolically in the following form:

e (6 5)=(v 7)+(03)

and it is easy to see that the operations on R agree with this representation. Moreover, the elements (0,0, a)
with a € A form a subring isomorphic to A and the elements (m,0,0) with m € M form a subring isomorphic
to M. Again the structure of R° could be expressed in matrix form:

e_(M+I M o (I M e (M+I M
R‘( 0 A+I>’ A‘(o A+I>’ (M+M)‘( 0 I)'

Example 5.9. A slight simplification of the above construction leads to the following definitions. Let A
be a ring and M be a right A-module. Define R = (M, A) = {(m,a)jm € M, a € A} with the equality
(m,a) =(m',a’) for m,m’ € M, a,d’ € A if and only if m =m’, a = a/. The operations on R are as follows:

(m,a) + (m';d) = (m+m',a+d), (m,a)(m,d)=(md,ad).

As before, R is a quasi-direct sum of M and A where M is a null ring, and R is a nilpotent or nil ring if 4
has this property. A similar construction was used in [3].

We will use the preceding construction in order to obtain the following.

Theorem 5.1. Let H be a subgroup of the adjoint group of some nilpotent p-algebra R such that H* is
a linearly independent set in R. Let V be a right reqular R-module, regarded as a null algebra. Then the
quasi-direct sum L = V © R defined in Ezample 5.9 has an adjoint group that contains the wreath product
Z,wr H of the groups Z, and H.

Before the proof of this theorem recall some definitions. If R is a nilpotent p-algebra, then the additive
group of the algebra A = R@® 1.F (F = GF(p)) is called a right regular R-module and the action of R on V
is defined by the multiplications'in R. If {1,a1,as,... ,a»} is a basis of A (and {ay,az,... ,a,} is a basis of
R), then V has a basis of elements vq, Vs, Va,, - - - ,Va, and if

n n
ar=Y B0 (r€R) then vur=> fyva,.
j=1

j=t

This construction gives a natural representation of R as a subalgebra of M,;(F) and is described in [20].
We say that the subgroup H of the adjoint group of p-algebra R is an active subgroup of R° if the regular
representation of the algebra R induces a regular representation of H in the usual sense. In other words, H#
consists of linearly independent elements in R. Hence A = R@ 1.F contains a group algebra of a subgroup H.
It is clear that if H is an active subgroup of an algebra R, then dim R > |H|. Thus, the theorem asserts that
if H is an active subgroup of some nilpotent p-algebra R, then there exists a nilpotent p-algebra L =V & R
whose adjoint group L° = V° x R° is a semidirect product of V° and R° and L° contains a wreath product
Z,wr H.

Proof of Theorem 5.1. Let {a;,as,...,a,} is a basis of R, where {a;,az,... ,a,} = H¥*,m < n. Let
{V1,Yay,Vag,- - - » Va, } be a basis of V' corresponding to an algebra R+1.F as described above. Then v;a; = v,,
for each ¢ < n. The action of a group R° on V° corresponds with the law v™ = (1 +r) for each u € V
and r € R. Let Uy = (v;) be a subalgebra spanned by v, (this is also an additive cyclic subgroup of V). If
Ug = U, for some a € R°, then v§ =v;(1 4+ a) = Av; for some A € F and v1((A — 1) — a) = 0. It follows that
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A—1=0and v;a =0, hence a = 0. Thus, only the identity element of R° fixes U;. Let @ = {U}|h € H}.
It is clear that for each h € H there corresponds a permutation
_(n U U U
¢(h) = ( U{" Uinoh Uf.?oh ... Umeh ’
where o is the operation in R°. Since {h,a; o h,...a, o h} = H, this map is well defined. It is obvious that
d(hoy) = ¢(h) o ¢(y) since (1 +a;)(1 +h) = (1 +a; +h+ah) =1+ a;0h, where a; o h € R for each

i < m. Assume that the elements v;,v;(1 + ay),... ,v1(l + an) are not linearly independent. Then there
exists Ag, A1,... ,Am € F such that 3 A =1and 3 Avi(1+a) = (3 M1 +a)) =vi(1+ 3 Ma;) = 0.
=0 =0 =L i=0

Since > Ma; =a € R, 1+ a is an invertible element in A = R + 1.F and the equality (1 + a) = 0 forces
=0

vy = 0, which is not the case. Hence the subgroup T' = (Uf|k € H) is a direct sum of subgroups UP(h € H)

and is invariant under H and T x H is isomorphic to the wreath product Z, wr H. Hence the adjoint group

L° =V° x R° contains T x H ~ Z,wr H. Theorem 5.1 is proved. O

It is easy to see that any abelian group H can be embedded as an active subgroup into the adjoint group
of some commutative nilpotent p-algebra. It is enough to consider the group algebra F H over F = GF(p). By
Theorem 5.1, for any p-group G with an elementary abelian commutator subgroup, there exists a p-algebra
L such that G < L° and L° is a metabelian group. However, we cannot assume that G can be embedded in
some modular group algebra of the same nilpotency class in general, since usually a metabelian group algebra
is abelian [7]. Therefore, no metabelian group can be the active subgroup of some nilpotent p-algebra with
metabelian adjoint group. It seems that the following problem is open: is every finite p-group G embedded
into the adjoint group of some nilpotent p-algebra with the same derived length?
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