SYNTHESIS OF NEW trans-1, 2-DISILYLETHYLENE

DERIVATIVES BY HYDROSILYLATION OF

ETHYNYLSILANES

M. G. Voronkov, L. V. Shchukina, O. G. Yarosh, and E. O. Tsetlina

UDC 542.91:547.1'128

As an expansion of our research on ethynylalkoxysilanes [1-3], in the present paper we studied the hydrosilylation of ethynylsilanes with chlorohydrosilanes in the presence of H_2PtCl_6 and the alcoholysis of the thus-obtained adducts with methanol.

The hydrosilylation of $(CH \equiv C)_2Si(OCH_3)CH_3$ with Cl_3SiH and $Cl_2(CH_3)SiH$, the same as in the case of $(CH \equiv C)_2Si(CH_3)_2$ [4], proceeds in steps, and by varying the reactant ratio it can be easily directed toward the formation of the mono- and diadducts (I)-(IV).

$$\label{eq:charge_constraints} \begin{split} HC &\equiv C\\ CH_3(CH_3O)Si(C \equiv CH)_2 + HSiRCl_2 \rightarrow \\ CH_3O & (I), \ (II)\\ + CH_3(CH_3O)Si \ (CH = CHSiRCl_2)_2\\ & (III), \ (IV)\\ R = CI \ (I). \ (III), \ CH_3 \ (II), \ (IV) \end{split}$$

The hydrosilylation of ethynyl-substituted trimethyl-, dimethylmethoxy-, and methyldimethoxysilanes with methyl(phenyl)chlorosilane leads to the formation of trans-1,2-disilylethylenes (V)-(VII), while the alcoholysis of the latter with CH₃OH in the presence of urea leads to methoxysilanes (VIII)-(X). The alcoholysis of (I)-(IV) under analogous conditions smoothly yields (CH₃)(CH \equiv C)(CH₃O)SiCH \equiv CHSi(CH₃)_{3-n} (OCH₃)_n [n = 2(XII) and 3(XII)] and CH₃(CH₃O)Si[CH \equiv CHSi(CH₃)_{3-n} (OCH₃)_n]₂ [n = 2(XIII) and 3(XIV)].

$$\begin{split} \text{(CH_3)}_{3-n}(\text{CH_3O})_n \text{SiC} &= \text{CH} + \text{HSi(CH_3)}(\text{C}_6\text{H}_5) \text{ Cl} - (\text{CH}_3)_{3-n}(\text{CH}_3\text{O})_n \text{SiCH} = \text{CHSi(CH}_3) (\text{C}_6\text{H}_5) \text{Cl} \rightarrow \\ & \text{(V)} - (\text{VII)} \\ & \xrightarrow{\text{CH}_3\text{OH}} (\text{CH}_3\text{O})_n \text{SiCH} = \text{CHSi(CH}_3) (\text{C}_6\text{H}_6) \text{OCH}_3 \\ & \text{(VIII)} - (\text{X}) \\ & n = 0 \text{ (V)}, \text{ (VIII)}; \quad n = 1 \text{ (VI)}, \text{ (IX)}; \quad n = 2 \text{ (VII)}, \text{ (X)} \end{split}$$

The addition of $Cl_2(CH_3)$ SiH to $CH \equiv CSi(OCH_3)_3$ gave 1-trimethoxysilyl-2-methyldichlorosilylethylene (XV), while the alcoholysis of the latter with CH_3OH gave methylpentamethoxy-1,2-disilylethylene [3].

The yield, properties, and analysis data of the synthesized compounds are given in Table 1. Their structure was confirmed by the NMR spectra (Tables 2 and 3).

EXPERIMENTAL

The NMR spectra were obtained on a Tesla BS-487B spectrometer for 10-30% CCl₄ solutions (internal standard = cyclohexane).

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No.8, pp.1874-1877, August, 1976. Original article submitted December 2, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.

TABLE 1. Properties of Synthesized Compounds

	compared to the state of the st	2					!		
Com-	Formula	ીં	bp, °C (p,	.,20	02,	110	Found '%	9/0	Empirical
bonnd		Yield,	mm 01 rig)	a_n	4	ນ	Н	Si	iormula
9	11 C.≡ C SI(CH₄)CH=CHSICI₄	65,6	61(5)	1,4655	1,1934	1	1	Ī	C ₆ H ₆ Si ₂ Cl ₈ O
	CII,O IIG=C Sencia nell—ettesient nel				1000				5
(E)	CIT.O	ς , ου	88(8)	1,45%	1,0987	١	ļ	1	C7H12S12C12O
(III)		8,68	120(6)	1,4865	1,3335	1	1		CeH ₁₀ Si ₃ Cl ₆ O
25		78,5	121(11)	1.5150	1,0003	1 1	 		CarlingiaCl
	(CH ₃)2(CH ₃ O)SiCH=-CHSi(CH ₃)(C ₆ H ₅)Cl CH ₃ (CH ₃ O)2SiCH=-CHSi(CH ₃)(C ₆ H ₅)Cl	5,5	125(4) 126(3)	1,5119	1,0414		11	11	CuttinSizClO CuttinSizClO
(VIII)	(VIII) (CH ₃),SICH=CHSi(CH ₃)(C ₆ H ₆)OCH ₃	69,5	125(11)	1,4965	0,9425	62,46	8,93	22,28	CtaHzzSi2O
(IX)	$(TX) = CH_3O(CH_3)_2SICH = CHSI(CH_3)(C_6H_6)OCH_3$	67,2	113(3)	1,4975	0,9754	58,60	8,85	27, 25 21, 08	C ₁₃ H ₂₂ Si ₂ O ₂
(X)	$(X) = \frac{\operatorname{ch}_{\mathcal{A}}(\operatorname{CH}_{\mathcal{A}}) \cdot \operatorname{SiGH}_{\circ} \cdot \operatorname{CHSi}(\operatorname{CH}_{A})(\operatorname{G}_{a}\operatorname{H}_{b}) \operatorname{coh}_{a}}{\operatorname{HC}_{\mathcal{A}}(\operatorname{C}_{b}) \cdot \operatorname{C}_{a}\operatorname{H}_{b}) \operatorname{ch}_{a}}$	66,4	129(6)	1,4865	1,0082	55,56	7,74	19,90	C ₁₃ H ₂₂ Si ₂ O ₃
(X)		91	90(5)	1,4340	0,9577	45,22	8,21 8,88	24,26	C9H18Si2O3
(XII)		5.4	98(5)	1,4325	1,0.05	43,85 44,31	7,4/	22,79	C ₉ H ₁₈ Si ₂ O ₄
HIX)	(XIII) CH ₂ O (CH ₃)Si[CH CHSi(OCH ₃)CH ₃ b	81.	143—144(5)	1,4440	1,00164	42,81	8,38	23,30	C12II28Si3O5
VIX)	(XIV) CILO(GR ₃)Sil CIL=CHSi(OGR ₃)3	52	154(5)	1,4395	1,0706	38,83	7,43	23,30	Ct2H2sSisO7
AXX XXX	(XV) (CH4O),SIGH :-CHSI(CH3)CH-	68,1 55,6	83(5) 90(5)	1,4405	1,1539	11	1].	11	C ₆ H ₁₄ Si ₂ Cl ₂ O ₃ C ₈ H ₂₀ S' ₂ O ₅
*Cf.[3].									

1766

TABLE 2. Parameters of NMR Spectra of Compounds* R_2 —SiCH = CHSi— R_2 1 R. α β R. α

R_1 R_2 R_2													
	_						Chem	ical sh	ift (T,	ppm)			SSCC
	E4	ואי	£,		CII	CIII g	18,	ži	38.3		R' 2	IV.,	(³] _{αβ} , Hz)
		CH3	Ü	CeHs	3.14	3,35	06.6	06.6	9.90	9,34	l	2,84—2,19	22,2
CH ₃ CH ₃		CH3	OCH ₃	C_6H_5	3,19	3,34	83,6	83.6	9,88	9,59	6,58	2,842,29	22,7
_	_	CH ₃	OCH	Ë	3,25	3.25	9.82	9.82	6.62	92.	6,56	2.94 - 2.27	1
_		OCH3	OCH3	OCH3	3	3.50	9,7	7,50	6,54	6,49	6,49	6,49	22,7

*The resonance of the olefinic protons is depicted by multiplets of the AB type.

TABLE 3. Parameters of NMR Spectra of Compounds

Lameters of thirt spectra of compounds [R1]	R_1 $CH = CHSi - R_2'$	$S_{1} \left\langle \begin{array}{cccccccccccccccccccccccccccccccccccc$	`:;;	or pr Ra"
T CHANGE				

SSCC, Hz	trans $^{3J}\alpha_{2}eta_{2}$	23,0
SSC	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OCH ₂ OCH ₃ CH ₃ CH ₃ OCH ₃ OCH ₃ 3,28 3,50 3,28 3,50 9,76 6,58 9,87 6,54 6,54 6,54 6,54 6,54 6,54 23,0 23,0
	R ₃ "	6,54
	$ m R_{z}''$	6,54
	R1"	9,87
	R ₃ ′	6,54
ppm)	R,	6,54
٦,	ж ₁ ′	18,6
shift	몫	3,58
Chemical shift (T, ppm)	R,	9,76
Cher	CII Br	3,50
	CHI	3,28
	CH Participant	3,50
	СΗ	3,28
	F.,	OCH3
	$R_{t'}$ $R_{s'}$ $R_{t''}$ $R_{e''}$ $R_{s''}$ CH CH CH R_{t}	OCH3
	R,"	CH3
	R,	ОСИЗ
	R2'	оснз
	R.	CH3
	R	CH ₈ OCH ₈
	R,	CH3
E C	punod	(XIII)

1-Methyl(ethynyl)methoxysilyl-2-trichlorosilylethylene (I). To a mixture of 12.4 g of (CH \equiv C)₂Si(OCH₃)-CH₃ (XVII) and 0.02 ml of an 0.2 N solution of H₂PtCl₆ in isopropanol at 40-50°C were added 6.8 g of HSiCl₃ in drops. The mixture was heated at 80-90° for 0.5 h. Distillation gave 6 g of unreacted (XVII), 8.66 g (65.6%) of (I), and 2.2 g of bis[β-(trichlorosilyl)vinyl]methyl(methoxy)silane (III). Compounds (II), (V)-(VII), and (XV) were obtained in a similar manner (see Table 1).

Bis [β -(trichlorosilyl)vinyl]methyl(methoxy)silane (III). This was obtained from 3.1 g of (XVII) and 6.8 g of HSiCl₅, in 70.8% yield (7.1 g). In addition, we isolated 1.75 g of (I). Compound (IV) was obtained in a similar manner (see Table 1).

1-Trimethylsilyl-2-methyl(phenyl)methoxysilylethylene (VIII). With stirring, to a mixture of 2.4 g of urea, 50 ml of MeOH, and 50 ml of petroleum ether (bp 90-92°) was added 10.16 g of (V) in drops. The mixture was heated at 60° for 0.5 h, cooled, the lower layer was separated, extracted with 10 ml of petroleum ether, the extract was combined with the upper layer, and the petroleum ether was distilled off under reduced pressure. Vacuum-distillation of the residue gave 6.95 g (69.5%) of (VIII). Compounds (IX)-(XIV) and (XVI) were obtained in a similar manner (see Table 1).

CONCLUSIONS

Eight new trans-1,2-disilylethylenes were synthesized by the hydrosilylation of $(CH \equiv C)_2Si(OCH_3)CH_3$ with $HSiCl_3$ and $HSi(CH_3)Cl_2$, and also of $(CH_3)_3SiC \equiv CH$, $CH_3O(CH_3)_2SiC \equiv CH$, and $CH_3(CH_3O)_2SiC \equiv CH$ with $HSi(CH_3)(C_6H_5)Cl_3$, and of $(CH_3O)_3SiC \equiv CH$ with $HSi(CH_3)Cl_2$. The alcoholysis of these compounds with MeOH gave the corresponding methoxy derivatives.

LITERATURE CITED

- 1. O. G. Yarosh, N. V. Komarov, and Z. G. Ivanova, Izv. Akad. Nauk SSSR, Ser. Khim., 2767 (1972).
- 2. M. G. Voronkov, O. G. Yarosh, V. A. Pestunovich, M. V. Sigalov, and L. V. Tsvetaeva, Izv. Akad. Nauk SSSR, Ser. Khim., 2066 (1974).
- 3. M. G. Voronkov, O. G. Yarosh, L. V. Tsvetaeva, M. V. Sigalov, and R. A. Gromkova, Zh. Obshch. Khim., 44, 1747 (1974).
- 4. M. F. Shostakovskii, N. V. Komarov, O. G. Yarosh, and L. V. Balashenko, Izv. Akad. Nauk SSSR, Ser. Khim., 1478 (1971).

1-ETHYNYL-3-CHLOROMETHYLTETRAMETHYLDISILOXANE

AND SOME OF ITS REACTIONS

O. G. Yarosh, T. D. Burnashova, and M. G. Voronkov

UDC 542.91:547.1'128

As an expansion of our research on ethynylalkoxysilanes [1-3], in the present paper we studied the cohydrolysis of $CH \equiv CSi(CH_3)_2(OC_2H_5)$ with $ClCH_2Si(CH_3)_2Cl$ and the reaction of the organomagnesium derivatives of the thus-formed hydrolysis product, 1-ethynyl-3-chloromethyltetramethyldisiloxane (I), with CH_2O , CH_3CO-CH_3 , $(CH_3)_3SiCl$, and Br_2 , the hydrosilylation of (I) with $HSi(CH_3)Cl_2$, its condensation with hexachlorocyclopentadiene, morpholine, and piperidine, and also exchange of the Cl atom in it by I under the influence of NaI.

The indicated cohydrolysis leads to the formation of 1-ethynyl-3-chloromethyltetramethyldisiloxane (I). The 1,3-diethynyl- and 1,3-di(chloromethyl)tetramethyldisiloxanes are obtained as by-products here.

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No.8, pp.1877-1880, August, 1976. Original article submitted December 2, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.