THE ALKYLATION AND BASE-PROMOTED RING-OPENING REACTION OF 3-PHENYLSULFONYL-3-TRIMETHYLSILYLCYCLOBUTANOLS. A NEW METHOD FOR THE PREPARATION OF β -METHYLENE KETONES

Takeshi TAKEDA, Kazuo ANDO, and Tooru FUJIWARA Department of Industrial Chemistry, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184

 β -Methylene ketones were produced by the alkylation of l-alkyl-3-phenylsulfonyl-3-trimethylsilylcyclobutanols followed by the treatment with potassium hydride.

The ring-opening reaction of cyclobutanol derivatives which have a leaving group at γ -position is an interesting process for the synthesis of unsaturated ketones, and a few examples have been reported.¹⁾

Recently, we showed that 1-alkyl-3-phenylthio-3-trimethylsilylcyclobutanols (1) and their trimethylsilyl ethers were easily prepared by the reaction of α , α -bis(trimethylsilyl)phenylthiomethyllithium with (chloromethyl)oxiranes²⁾ and the ring-opening reaction proceeded in the sila-Pummerer rearrangement of sulfoxide derived from <u>1</u>.³⁾ We wish to report here the alkylation of 3-phenylsulfonyl-3-trimethylsilylcyclobutanols (2) which accompanies the rearrangement of trimethyl-silyl group and base-promoted ring-opening reaction of the alkylated products (4) (Eq.1).

The oxidation of <u>1</u> was carried out by the treatment with m-chloroperbenzoic acid (2.5 equiv.) in CH_2Cl_2 at 0 °C for 1 h and the corresponding sulfones (2) were obtained in high yields (R^1 = Et; 94%, Bu; 92%, Ph(CH_2)₂; 96%, Ph; 96%). When <u>2</u> was treated with butyllithium at 0 °C, the 1,4-silyl group shift from carbon to oxygen was observed.⁴⁾ The resulting carbanion (3) was allowed to react with alkyl halide, and 3-alkylcyclobutanol (4) was obtained in good yield by the acid hydrolysis of the trimethylsilyl ether (Table 1).

Typical experimental procedure was as follows: To a THF (6 ml) solution of 1pheny1-3-pheny1sulfony1-3-trimethy1sily1cyclobutanol (2) (721 mg, 2 mmol) was added a hexane solution of buty11ithium (2.2 mmol) at 0 °C and the reaction mixture was stirred until the sily1 group shift completed (checked by TLC). Benzy1 bromide (684 mg, 4 mmol) in HMPA (0.6 ml) was added to the reaction mixture and it was refluxed for 1 h. After cooling, the reaction mixture was quenched with a phosphate buffer solution (pH 7) and organic layer was extracted with AcOEt. The extract was condensed under reduced pressure. The crude trimethy1sily1 ether was dissolved in EtOH (10 ml)-HCl (1 mol dm⁻³, 1 ml) and stirred for 30 min at r.t. The reaction mixture was diluted with water. The organic layer was extracted with AcOEt and dried over Na₂SO₄. The solvent was removed, the residue was chromatographed on silica gel (AcOEt-hexane), and 3-benzy1-1-pheny1-3-pheny1sulfonylcyclobutanol (4) (702 mg) was isolated in 93% yield.



Table 1. Alkylation of 3-Phenylsulfonyl-3-trimethylsilylcyclobutanols (2).

		к ² сн	2 ^X Yie	eld of (4) ⁵⁾ (%)
R ¹	MeOTs	^{n-C} 8 ^H 17 ^I	PhCH2Br	CH2=CHCH2Br
Et	74	83	81	
Bu	74	87	82	84
Ph(CH ₂) ₂	78		83	
Ph	84	87	93	

The base-promoted conversion of 3-benzylcyclobutanols (4; R^2 =Ph) to the unsaturated ketones was examined under various reaction conditions and it was found that potassium hydride was effective for the present ring-opening reaction and β methylene ketone (5) and β , γ -unsaturated ketone (7) were produced in high yield (run 7). Further, β -methylene ketone (5) was obtained as a major product when the large excess amounts of base was used (run 9) (Table 2).

In a similar manner, various 3-phenylsulfonylcyclobutanols (4) were treated with potassium hydride and the corresponding unsaturated ketones were synthesized (Table 3).

The typical experimental procedure was as follows: To a THF (5 ml) suspension of potassium hydride (4.7 mmol) was added a THF (7 ml) solution of 3-methyll-phenylethyl-3-phenylsulfonylcyclobutanol (4) (387 mg, 1.17 mmol) at r.t. over 5 min. After stirring for 5 min, the reaction mixture was cooled to -78 °C and quenched with a phosphate buffer solution (pH 7). The organic layer was extracted with ether and dried over Na_2SO_4 . After evaporation of the solvent, the residue was purified by TLC (AcOEt-hexane) and 2-methyl-4-oxo-6-phenyl-1-hexene (5) and 2-methyl-4-oxo-6-phenyl-2-hexene (6) (214 mg) were obtained in 97% yield.

Chemistry Letters, 1983

The ratio of the isomers was determined by the NMR spectrum of the mixture.

Many reactions for the preparation of β,γ -unsaturated ketones⁶⁾ including the isomerization of α,β -unsaturated ketones⁷⁾ have been reported. Some of these ractions were employed for the synthesis of β -metylene ketones.^{6b,e,f,j),7b)}

Run	R ¹	Bas (equi		Solvent (3 ml/mmol)	Temp	<u>Time</u> min	Yield %	Ratio of (5)	isomers ^{b)} (7)
1	Et	BuLi	(1.1)	THF	reflux	180	0	<u></u>	
2	Et	BuLi	(1.1)	THF-HMPA ^{C)}	reflux	90	42		100
3	Bu	BuLi	(1.1)	THF-HMPA ^{C)}	reflux	40	26		100
4	Bu	NaH	(2.1)	THF-HMPA ^{C)}	r.t.	60	61		100
5	Bu	NaH	(3.0)	THF-HMPA ^{C)}	r.t.	150	71		100
6	Et	tBuOK	(2.2)	THF	r.t.	15	44		100
7	Et	KH	(2.2)	THF	r.t.	15	92	12	88
8	Et	KH	(4.0)	THF	r.t.	10	70	48	52
9	Et	KH	(4.0)	THF ^{d)}	r.t.	10	72	57	43

Table 2. Effect of the Reaction Conditions in the Ring-opening Reaction of 3-Benzyl-3-phenylsulfonylcyclobutanols $(4; R^2=Ph)$.^{a)}

a) The reaction was quenched at r.t.

b) Determined by NMR spectrum. The formation of 6 was not observed.

c) 0.3 ml/mmol of HMPA was used.

d) 10 ml/mmol of THF was used.

Table 3. Ring-opening Reaction of $4.^{a}$

R ¹	R ² СН ₂	<u>Reaction Time</u> min	Total yield %	Ratio (5) ⁵⁾	of iso (6) ⁵⁾	mers ^{b)} (7) ⁵⁾
Et	PhCH ₂	10	72 ^{C)}	57		43
Bu	PhCH ₂	7	83	48		52
Et	Oct	7	90	84	16	
Bu	Oct	7	97	87	13	_
$Ph(CH_2)_2$	Oct	7	74 ^{d)}	87	13	
Ph(CH ₂) ₂	Me	5	97	87	13	
Ph	Oct	3	96	31	69	

a) The reaction was carried out by the treatment of $\underline{6}$ with KH

(4 equiv.) in THF (10 ml/mmol) at r.t. and was quenched at -78 °C.b) Determined by NMR spectrum.

c) The reaction was quenched at r.t.

d) Overall yield from 2.

Though the result listed in Table 3 shows that the partial isomerization of the initially formed β -methylene ketone (5) to <u>6</u> or <u>7</u> proceeds under the basic conditions, the present reaction provides a general method for the preparation of β -methylene alighatic ketones.

References

- a) R. H. Hasek, R. D. Clark, and J. H. Chaudet, J. Org. Chem., <u>26</u>, 3130 (1961);
 b) B. M. Trost and L. N. Jungheim, J. Am. Chem. Soc., <u>102</u>, 7910 (1980).
- T. Takeda, S. Naito, K. Ando, and T. Fujiwara, Bull. Chem. Soc. Jpn., <u>56</u>, 967 (1983).
- 3) T. Takeda, T. Tsuchida, K. Ando, and T. Fujiwara, Chem. Lett., 1983, 549.
- The similar rearrangement of silyl group was reported; M. Isobe, M. Kitamura, and T. Goto, Tetrahedron Lett., <u>1979</u>, 3465.
- 5) The structures of these compounds are supported by IR and NMR spectra.
- a) C. Broquet, Tetrahedron, <u>29</u>, 3593 (1973); b) R. Calas, J.Dunogues, J.-P. Pillot, C. Biran, F. Disciotti, and B. Arreguy, J. Organomet. Chem., <u>85</u>, 149 (1975); c) E. J. Corey and P. Ulrich, Tetrahedron Lett., <u>1975</u>, 3685; d) F. B. Wargnier and R. J. Carlier, Tetrahedron, <u>32</u>, 2725 (1976); e) J. L. C. Kachinski and R. G. Salomon, Tetrahedron Lett., <u>1977</u>, 3235; f) W. Schwab, H. Grund, and V. Täger, Angew. Chem. Int. Ed. Engl., <u>18</u>, 78 (1979); g) M. Onaka, T. Goto, and T. Mukaiyama, Chem. Lett., <u>1979</u>, 1483; h) E. Wada, M. Okamura, and T. Nakai, J. Org. Chem., <u>44</u>, 2952 (1979) and references cited therein; i) W. Steglich and U. Niewohner, Angew. Chem. Int. Ed. Engl., <u>20</u>, 395 (1981); j) D. L. J. Clive and C. G. Russell, J. Chem. Soc., Chem. Commun., <u>1981</u>, 434; k) G. Rousseau and J. M. Conia, Tetrahedron Lett., <u>22</u>, 649 (1981) and references cited therein; 1) L. S. Hegedus and R. Tamura, Organometallics, 1, 1188 (1982).
- 7) a) H. O. House, "Modern synthetic reactions", 2nd ed, W. A. Benjamin, New York (1972), p. 504; b) S. G. Hegde and J. Wolinsky, Tetrahedron Lett., <u>22</u>, 5019 (1981).

(Received May 27, 1983)