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Dponemycin 1’) was isolated from the fermentation broth of Srtuflonryccr hygmcopicus No. P247-71. 

It shows strong in vim cytotoxicity against various tumor cells and selective in viw antitumor activity against 

B-16 melanoma in mice. Recently, T. Oilcawa et al., reported that 1 is a powerful angiogenesis inhibitor to 

both prolifmtion and migration of endothehal celb?‘. 

The struchual studies clarified a unique structure of eponemycin, which consisted of isooctanoic acid, 

Lserine and an epoxyketone unit. The absolute configuration at the C-2 had, however, not been determined. 

6,7Dihydroeponemycin 2, obtained by catalytic hydrogenation of 1, showed strong antitumor activity 

comparable to 1, whereas the epoxide-opened derivative was found inactive’). We recently reported a related 

antitumor antibiotic epoxomicin which also has an epoxylcetone unit but no olefinic bond side chain3). Thus, 

the epoxyketone was considered to be a key structural unit but the olefinic bond was not for the activity of 

this class of antibiotics. 

A total synthesis of 1 was recently achieved by U. Schmidt ef al.,‘) who constructed the epoxide by 

the Sharpless or hydrogen peroxide oxidation to a 3-ketoallyl alcohol at the last step of the synthesis and thus 

it could not establish the stereochemistry at the C-2. 
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In this communication, we describe a total synthesis of 2 and elucidation of the absolute umflguration 

of the epoxide ring using the asymmetric Sharpless epoxidation to a 3-alkoxyallylic alcohol. 

Starting nWerial4 was prepared from 2-bromo-2-propen-l-ols) in 70.5 46 yield by successive treating 

with n-BuLi and pmethoxybenxyl chloride. Lithiation of 4 with n-BuLi at -lOYC, followed by coupling 

in situ with KZ-(S)-leucina 36) gave an inseparable epimeric mixture of ally1 alcohol 5. Reaction of 5 with 

(+)-MTPA-Cl, followed by separation of the products with a silica gel column gave isomers 6a (62 96) and 

6b (27 96)‘). Treatment of 6a with NaOMe in MeQH gave 5a (50 %) along with oxaxolidinone derivative 

7a (22 %), while a similar reaction of 6b exclusively afforded 7h (78 96). Comparison*) of the chemical 

shifts and coupling constants of ring protons in 7a (cis) and 7b (trun.r)% indicated that the C-3 

stereoehemishies of 6a and 6b were 3R and 3S, respectively. The Sharpless epoxidations”‘) of Sa using L- 

(+)-DIPT and D-(-)-DIPT unexpectedly resulted in isolation of cpoxide 8a as the major product with 58 and 

38 96 yields, mspectively. Although the production of a small amount of C-2 epimeric epoxide was observed 

(8b, < 3 %), the Sharpless oxidations seemed not to proceed stereoselectively in this case. 

Therefore, the Sharpless epoxidation using the primary alcohol”) as the recognition site was 

investigated for elucidation of the C-2 stereochemistry. Treatment of 6a with DDQ’” followed by the 

Sharpless epoxidation of the resulting 9 with D-(-)-DIPT and L-(+)-DIPT afforded the epoxides 1Oa and 

10b13), mspectively, with high stereoselectivity. This indicated the absolute configurations of C-2 of 1Oa and 

lob to be 2R and 2.9, respectively based on the Sharpless rule. Meanwhile, the epoxide 8a was sequentially 

tmated with (+)-MTPA-Cl and DDQ to afford exclusively lOa, which was identical with the compound 

derived from 9 by HPLC, IR, and [c]n. Thus, the absolute configuration of the epoxide ring in 8a was 

determined to be 2R. 

Sequential transformations of 8a by hydrogenolysis, &~ylation with 0-acetyl-N-isooctanoyl-L-scrine, 

the Swern oxidation of the secondary alcohol, mild alkaline cleavage of the acetyl group and final deprotection 

of the PMB group with DDQ afforded (2R)-6,7_dihydroeponemycin, which was identical with 2 in all 

respects. 

In conclusion, a total synthesis of (2R)-6.7-dihydroeponemycin 2 was performed via the (ZR)-epoxide 

intermediate 8a and hence the C-2 stereochemistry of eponemycin has been established as 2R. 
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Z : beaqloxycarbonyl, PMII: pmelhoxybeozyl, MTPAz a-mcthmyu-(trl~umethyl)phcnyla~~i 

Beagents and conditions 

i) 4, n-BuLi 1.6M hexane, THF, -105”C, 0.5h; 3, -100 - -105°C 0.5h, 26 %; ii) (+)-MTPA-Cl, DMAP, 
CHsCls, r.t., 2Oh, 6a (62 %). 6b (27 96); iii) NaOMe (6 eq.), MeOH, r.t., 4h, 5a (50 %), 7a (22 %), 7b 
(78 %); iv) Ti(i-Pro),, D-(-)-DIPT, t-BuOQH, CH,Cl,, -15”C, 48h, 8a (38 %), 1Oa (68 96); v) Ti(i-ho),, 
L-(+)-DIPT, t-BuOOH, CHsCl,, -15°C 48h, 8a (58 %), lob (50 %); vi) DDQ (1.5 eq.), CH,Cla-H,O, r.t., 
16h, 9 (90 %), 1Oa (86 %), 2 (75 96); vii) Hr-Pd/C, EtOAc, r.t., 10 min. ; viii) Oacetyl-Kisooctanoyl-L- 
serine, N-hydroxysuccinimide, DCC, EtOAc, r.t., lh, 42 46; ix) DMSQ-(COCl),-TEA, CH&, -WC, lh, 
57 %; x) K&Q (Sq.), 80 % MeOH-H,O, r.t., 15 min., 88 96 
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