PHENYLETHANOID GLYCOSIDES FROM PLANTAGO DEPRESSA

SANSEI NISHIBE,* MICHIKO SASAHARA, JIAO YING,† YUAN CHANG LU† and TOSHIHIRO TANAKA‡

Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen-University, Ishikari-Tobetsu, Hokkaido 061–02, Japan; †Department of Traditional Chinese Materia Medica, Liaoning College of Traditional Chinese Medicine, Shenyang, P. R. China; ‡Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502, Japan

(Received in revised form 10 August 1992)

Key Word Index—*Plantago depressa*; Plantaginaceae; phenylethanoid glycosides; β -oxoacteoside.

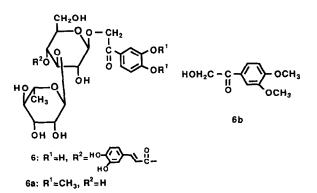
Abstract—The five known phenylethanoid glycosides, cistanoside F, β -hydroxyacteoside, campenoside I, acteoside and orobanchoside, and a new phenylethanoid glycoside, β -oxoacteoside, were isolated from the aerial parts of *Plantago depressa*. The structure of β -oxoacteoside was deduced from chemical and spectral evidence to be β -oxo- β -(3,4-dihyroxyphenyl)-ethyl-O- α -L-rhamnopyranosyl-(1 \rightarrow 3)- β -D-(4-O-caffeoyl)-glucopyranoside.

INTRODUCTION

The aerial parts of *Plantago depressa* have been used since ancient times as a diuretic, an anti-asthmatic and an antiinflammatory drug (oriental medicinal herb) in China. It is listed as 'Plantaginis Herba' in the Chinese Pharmacopeia [1]. In a previous paper [2], we reported the isolation of four phenylethanoid glycosides, 3,4dihydroxyphenethyl alcohol-6-O-caffeoyl- β -D-glucoside, acteoside, plantamajoside and hellicoside, and a flavonoid, plantaginin, from *P. asiatica* and the enzyme inhibitory activities of phenylethanoid glycosides on cyclic AMP phosphodiesterase, 5-lipoxygenase and the lens aldose reductase, respectively. We have now examined the phenolic compounds of the aerial parts of *P. depressa*, and isolated a new phenylethanoid glycosides.

RESULTS AND DISCUSSION

The HPLC chromatogram of a methanol extract of the aerial parts of *P. depressa* showed the presence of six phenolic compounds. This extract was fractionated by successive extractions with ether, ethyl acetate and *n*-butanol-ethyl acetate (5:1). The ethyl acetate extract yielded 1-6 on column chromatography over Sephadex LH-20. The *n*-butanol-ethyl acetate extract after column chromatography on Sephadex LH-20 furnished 1, 2 and 4.


Compounds 1–5 were identified as cistanoside F [3], β -hydroxyacteoside [4], campenoside I [5], acteoside [4] and orobanchoside [6] by comparing their various physical and spectral data with those in the literature or by direct comparison with authentic samples.

Compound 6, designated as β -oxoacteoside, was obtained as an amorphous powder whose M, was confirmed by the observation of m/z 639 $[M(C_{29}H_{34}O_{16})+H]^+$

and m/z 661 $[M(C_{29}H_{34}O_{16}) + Na]^+$ by positive ion FAB mass spectrometry. The UV spectrum of **6** showed absorption maxima at 222sh, 232, 287 and 326 nm. Its IR spectrum suggested the presence of a conjugated ester (1705 cm⁻¹), a carbonyl group (1695 cm⁻¹) and aromatic rings (1605 cm⁻¹ and 1521 cm⁻¹), while its ¹H NMR spectrum showed signals due to methyl protons (δ 1.0), anomeric protons of a sugar moiety (δ 4.38 and 5.13), aromatic protons of a phenethyl moiety bearing a carbonyl group at the β -position (δ 6.74 and 7.30–7.35) and protons of a caffeoyl moiety (δ 6.18, 6.68, 6.85, 6.96 and 7.50).

The reaction of **6** in methanol with excess diazomethane gave deacyl- β -oxoacteoside dimethyl ether (**6a**) as an amorphous powder (C₂₂H₃₂O₁₃) and 4-(3,4-dimethoxyphenyl)-2-pyrazoline-3-carboxylic acid methyl ester (**6c**) [7].

Acid hydrolysis of **6a** gave **6b**, D-glucose and L-rhamnose. Compound **6b** was identical with β -oxo- β -(3,4dimethoxyphenyl)-ethanol which was synthesized by the reaction of 3,4-dimethoxyacetophenone with iodobenzene [8]. These results clearly suggested that **6** consists of a β -oxo- β -(3,4-dihydroxyphenyl)-ethyl moiety and a rhamno-glucosyl moiety containing a caffeoyl group. The

^{*}Author to whom correspondence should be addressed.

¹³C NMR spectrum of **6** supported the attachment of the caffeoyl moiety at C-4 of the inner glucose, the rhamnosyl moiety at C-3 of the inner glucose and linkage of the inner glucosyl moiety to the α -position of β -oxo- β -(3,4-dihydroxyphenyl)-ethanol. Consequently, the structure of **6** has been established as β -oxo- β -(3,4-dihydroxyphenyl)-ethyl- $0-\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - β -D-(4-0-caffeoyl)-glucopyranoside.

A novel phenylethanoid glycoside bearing a carbonyl group at the β -position of a phenethyl moiety is reported for the first time. Also it is biogenetically noteworthy that a series of compounds which may indicate metabolic pathways of phenylethanoid glycosides was isolated. In addition, it should be noted from a medicinal point of view that the phenylethanoid glycosides of *P. depressa* are different from those of *P. asiatica* as the origin of "Plantaginis Herba" in the Japanese Pharmacopeia XII [9].

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively; chemical shifts are given in δ relative to TMS as int. std. Precoated TLC plates, silica gel 60_{F254} (Merck), were used for prep. TLC.

Plant material. Plantago depressa Willd. was collected in August 1990 at Liaoning, China. A voucher specimen has been deposited in the Department of Traditional Chinese Materia Medica, Liaoning College of Traditional Chinese Medicine.

Isolation. Dried aerial parts (5 kg) were extracted $\times 3$ with MeOH for 1 hr at 80°. The extract was concd in vacuo at 40° to one-fifth; H₂O was added and the suspension filtered. The filtrate was extracted successively with Et₂O, EtOAc and *n*-BuOH-EtOAc (5:1). The extracts were evapd to dryness in vacuo at 40°. The EtOAc extract (3.9 g) was subjected to CC on Sephadex LH-20, eluting with H₂O to give 1 (18 mg), 2 (126 mg), 3 (24 mg), 4 (362 mg), 5 (83 mg) and 6 (43 mg). The *n*-BuOH-EtOAc extract (5 g) was subjected to CC on Sephadex LH-20, eluting with H₂O to give 1 (35 mg), 2 (48 mg) and 4 (31 mg). Cistanoside F (1). Amorphous powder. FAB-MS m/z 511 [M + Na]⁺. IR, UV, ¹H and ¹³C NMR spectral data were in agreement with reported data [3].

 β -Hydroxyacteoside (2). Amorphous powder. FAB-MS m/z 663 [M + Na]⁺. IR, UV, ¹H and ¹³C NMR spectral data were consistent with those of an authentic sample [4].

Campenoside I (3). Amorphous powder. FAB-MS m/z 677 [M + Na]⁺. IR, UV, ¹H and ¹³C NMR spectral data were in agreement with reported data [5].

Acteoside (4). Amorphous powder. FAB-MS m/z 647 $[M+Na]^+$. IR, UV, ¹H and ¹³C NMR data were consistent with those of an authentic sample [4].

Orobanchoside (5). Amorphous powder. FAB-MS m/z 645 $[M-H_2O+Na]^+$. IR, UV, ¹H and ¹³C NMR, HPLC spectral data were consistent with those of an authentic sample [6].

β-Oxoacteoside (6). Amorphous powder, mp 153–158° (uncorr.). $[\alpha]_D^{20} - 72.2°$ (MeOH; c 0.3). FAB-MS m/z 639 $[M+1]^+$, 661 $[M+Na]^+$. UV λ_{max}^{MeOH} nm (log ε): 222 (4.31) sh, 232 (4.30), 287 (4.20), 326 (4.30). IR ν_{max}^{KBr} cm⁻¹: 3424 (OH), 1705, 1695 (C=O), 1605, 1521 (arom. C=C). ¹H NMR (CD₃OD): δ 1.00 (3H, d, J=6 Hz, Rha-Me), 4.38 (1H, d, J=8 Hz, Glc-H-1), 5.13 (1H, d, br s, Rha-H-1), 6.74 (1H, d, J=8 Hz, H-5), 7.30–7.35 (2H, m, H-2, H-6), 6.18 (1H, d, J=8, 2 Hz, H-6'), 6.68 (1H, d, J=8 Hz, H-5'), 6.85 (1H, dd, J=8, 2 Hz, H-6'), 6.96 (1H, d, J=2 Hz, H-2'), 7.50 (1H, d, J=16 Hz, H-7'). ¹³C NMR see Table 1.

Reaction of compound 6 with excess diazomethane. A soln of 6 (30 mg) in MeOH was treated with excess CH_2N_2 and the mixt. left to stand overnight at 5°. The reaction mixt. was then evapd to dryness. The residue was extd with CHCl₃. The insol. portion was purified by prep. TLC using CHCl₃-MeOH-H₂O (13:7:2) to give 6a (10 mg), amorphous powder, $C_{22}H_{32}O_{13}$. FAB-MS m/z527 [M+Na]⁺. The sol. portion was purified by prep. TLC using CHCl₃-EtOAc (1:1) to give 6c (5 mg), needles (MeOH), mp 119-120°, which was identical with 4-(3,4dimethyoxyphenyl)-2-pyrazoline-3-carboxylic acid Me ester obtained by the reaction of 3,4-dimethoxycinnamic acid in MeOH with excess CH₂N₂ [7].

С	β-Oxo-dihydroxy- phenethyl moiety				Rhamno-glucosyl moiety			Caffeoyl moiety
	6	6a	6b	С	6	6a	С	6
1	127.5	128.9	128.5	Glc-1	103.9	104.1	1'	127.7
2	115.5	111.2	111.1	Glc-2	76.0	75.5	2′	115.1
3	152.7	155.8	155.4	Glc-3	81.0	84.3	3′	146.6
4	146.4	150.4	150.6	Glc-4	70.2	70.1	4′	149.5
5	115.8	111.6	111.8	Glc-5	76.1	77.8	5′	116.3
6	122.6	123 4	123.5	Glc-6	62.2	62.5	6′	123.0
χ	72.1	72.1	66.0	Rha-1	102.7	102.6	7'	147.8
β	196.5	196.7	198.6	Rha-2	71.9	71.9	8′	114.4
OMe		56.4	56.4	Rha-3	71.8	72.1	9′	168.0
		56.5	56.5	Rha-4	73.6	73.9		
				Rha-5	70.2	70.0		
				Rha-6	18.2	17.7		

Table 1. ¹³C NMR spectral data for compounds 6, 6a and 6b (in CD₃OD, 100 MHz)

Acid hydrolysis of compound **6a**. Compound **6a** in 1% H_2SO_4 soln was heated at 100° for 1 hr, then cooled. The mixt. was extracted with Et_2O . The Et_2O layer was washed and evapd to dryness. The residue was purified by prep. TLC using CHCl₃-EtOAc (1:1) to give **6b**, $C_{10}H_{12}O_4$, EIMS m/z 196 [M]⁺. Compound **6b** was identical with β -oxo- β -(3,4-dimethoxyphenyl)-ethanol which was synthesized by the reaction of 3,4-dimethoxy-acetophenone with iodobenzene [8].

The aq. layer was neutralized with $BaCO_3$ and the ppt. filtered off. The filtrate was evapd to dryness and the residue analysed by GC to identify L-rhamnose and D-glucose as TMSi ethers in a ratio of 1:1.

Acknowledgements—We thank Fujinaga Pharmaceutical Co. Ltd for a scholarship to J.Y. We thank Prof. C. Andary of Montpellier University for a sample of orobanchoside.

REFERENCES

- 1. The Chinese Pharmacopeia (1990) Part 1, p. 53. Renmin Weisheng Publishing Co., Beijing.
- 2. Ravn, H., Nishibe, S., Sasahara, M. and Xuebo, L. (1990) Phytochemistry 29, 3627.
- 3. Kobayashi, H., Karasawa, H., Miyase, T. and Fukushima, S. (1985) Chem. Pharm. Bull. 33, 1452.
- Kitagawa, S., Tsukamoto, H., Hisada, S. and Nishibe, S. (1984) Chem. Pharm. Bull. 32, 1209.
- 5. Imakura, Y., Kobayashi, S. and Mima, A. (1985) Phytochemistry 24, 139.
- 6. Andary, C., Wylde, R., Laffite, C., Privat, G. and Winternitz, F. (1982) Phytochemistry 21, 1123.
- Nishibe, S., Okabe, K., Tsukamoto, H., Sakushima, A., Hisada, S., Baba, H. and Akisada, T. (1982) Chem. Pharm. Bull. 30, 4548.
- 8. Moriarty, M. R., Hu, H. and Gupta, C. S. (1981) Tetrahedron Letters 22, 1283.
- 9. The Japanese Pharmacopeia XII (1991) p. D-436. Hirokawa Shoten, Tokyo.