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Ethylene, a-olefins, and vinyl arenes undergo platinum-

catalyzed hydroarylation with substituted indoles in moderate

to good yield.

The intermolecular hydroarylation of unactivated alkenes has

attracted considerable attention as an atom-economical approach

to the functionalization of arenes. However, despite prolonged

effort in this area, general and effective methods for the selective

intermolecular hydroarylation of unactivated alkenes remain

scarce.1 Strong Lewis acids such as AlCl3 catalyze the hydroaryla-

tion of unactivated alkenes, but these approaches suffer from poor

selectivity and limited functional group compatibility.2 Ru(II)-3

and Rh(I)-4 phosphine complexes catalyze the intermolecular

hydroarylation of unactivated alkenes with arenes that possess a

suitable directing group or that are predisposed to the formation of

a stabilized carbene intermediate, respectively. Ir(III),5 cationic

Pt(II),6 and Ru(II) hydridotris(pyrazolyl)borate complexes7 cata-

lyze the hydroarylation of unactivated alkenes with benzene, but

require forcing reaction conditions (¢180 uC) or a large excess of

benzene. Brønsted acids catalyze the addition of aniline to

norbornene and vinyl arenes to form mixtures of hydroarylation

and hydroamination products.8 The cationic zirconocene complex

Cp2Zr(CH3)(THF)+ catalyzes the hydroarylation of propene with

a-picoline but is restricted to this lone example.9

Absent from the catalytic systems noted in the preceding

paragraph are examples of the intermolecular hydroarylation of

unactivated alkenes with electron-rich arenes such as indoles.

Rather, hydroarylation of alkenes with indoles requires either an

electron-deficient Michael acceptor1 or prolonged heating under

highly acidic conditions.10 We recently reported effective Pt(II)-

catalyzed protocols for the intramolecular hydroarylation of

unactivated alkenes with indoles11,12 and for the intermolecular

hydroalkylation of ethylene with b-diketones.13 On the basis of

these two precedents, we considered that Pt(II) complexes might

also catalyze the intermolecular hydroarylation of unactivated

alkenes with indoles. Indeed, here we report the platinum-

catalyzed hydroarylation of ethylene, a-olefins, and vinyl arenes

with substituted indoles.

Reaction of 1,2-dimethylindole (1), ethylene (50 psi), and a

catalytic amount of [PtCl2(H2CLCH2)]2 (2; 0.5 mol %) in dioxane

at 90 uC for 6 h led to isolation of 3-ethyl-1,2-dimethylindole (3) in

99% yield (eqn (1)).{ The efficiency of the platinum-catalyzed

conversion of 1 to 3 was such that 0.05 mol% of 2 was sufficient to

achieve 90% isolated yield of 3 (TON = 900; Table 1, entry 1). The

Pt-catalyzed hydroarylation of ethylene tolerated the presence of

either an electron-donating or electron-withdrawing group at the

C(5) position of the indole moiety or a phenyl group at the C(2)

position of the indole moiety (Table 1, entries 2–5). Substitution at

the C(2) position of the indole appeared to facilitate intermolecular

hydroarylation, but was not required (Table 1, entry 6).

ð1Þ

a-Olefins also underwent Pt-catalyzed hydroarylation with

indoles with predominant formation of the Markovnikov addition

product. For example, reaction of 1 with propene (50 psi) and a

catalytic amount of PtCl2 (5 mol%) in dioxane that contained a

trace (5 mol%) of HCl at 90 uC for 14 h led to isolation of a 6 : 1

mixture of 3-isopropyl-1,2-dimethylindole (4a) and 3-n-propyl-1,2-

dimethylindole (4b) in 88% combined yield (Table 2, entry 1).§

Likewise, Pt-catalyzed reaction of 1 with 1-butene (30 psi) led to

isolation of a 6 : 1 mixture of 5a and 5b in 74% combined yield

(Table 2, entry 2). Vinyl arenes also underwent Pt-catalyzed

hydroarylation with indoles. In an initial experiment, reaction of 1

and p-chlorostyrene with a catalytic amount of PtCl2 (5 mol %)

in dioxane at 120 uC for 16 h led to .95% conversion to form a

6.5 : 10.3 : 1.0 mixture of Markovnikov adduct 6a, anti-

Markovnikov adduct 6b, and oxidized Markovnikov product 6c

in 89% combined yield (GC, Scheme 1). Unfortunately, neither

unreacted 1 nor 6c could be separated from 6a and 6b by flash

chromatography. Thus, the crude reaction mixture was first

treated with 1,4-benzoquinone to consume unreacted 1 and then

hydrogenated to convert 6c to 6a. Subsequent chromatography led

to isolation of a 1 : 1.6 mixture of 6a and 6b in 79% combined yield

(Table 2, entry 3)."

A number of styrene derivatives underwent platinum-catalyzed

hydroarylation with 1 in moderate yield (Table 2, entries 4–8).

Noteworthy was that the Markovnikov/anti-Markovnikov (a : b)

selectivity of the Pt-catalyzed hydroarylation of 1 increased from

2.0 : 1 for the hydroarylation of p-methylstyrene to 1 : 5.8 for the

hydroarylation of p-nitrostyrene (Table 2, entries 4–8). A plot of

the log of the Markovnikov/anti-Markovnikov (a : b) ratio versus

the Hammett s-parameter was linear with slope r = 20.98 (see

Supporting Information{), which points to the increasing con-

tribution of the zwitterionic resonance structures B and C with the

increasing electron donating ability of the para substituent.I14
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In summary, we have developed effective Pt(II)-catalyzed

protocols for the intermolecular hydroarylation of ethylene,

a-olefins and vinyl arenes with indoles. We continue to work

toward the development of more active and more selective

hydroarylation catalysts.
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