Chem. Pharm. Bull. 23(5)1171—1172(1975) UDC 547.94.057:581.192 ## Synthesis of the Ochotensine Type 1-Spiroisoquinoline. Dimsylsodiuminduced Rearrangement of N-Methyltetrahydroprotoberberinium Salts The Stevens rearrangement of the N-methyltetrahydroprotoberberinium iodide (3) in the presence of sodium methylsulfinylmethanide afforded the ochotensine type 1-spiroisoquinoline (4), the structure of which was determined by the chemical and spectroscopic methods. Although several works on the syntheses of ochotensine type 1-spiroisoquinolines through base-induced rearrangement of the phenolic protoberberinium salts were reported, 1-4) the non-phenolic protoberberinium salts were quite stable to these reagents. Recently, Kondo ¹⁾ M. Shamma and C.D. Jones, J. Am. Chem. Soc., 91, 4009 (1969); idem, ibid., 92, 4943 (1970). ²⁾ M. Shamma and J.F. Nugent, Tetrahedron Letters, 1970, 2625. ³⁾ M. Shamma and J.F. Nugent, Chem. Commum., 1971, 1642. ⁴⁾ M. Shamma and J.F. Nugent, Tetrahedron, 29, 1265 (1973), 1172 Vol. 23 (1975) and his co-workers reported the formation of the 3-spiroisoquinoline system (2) by the Stevens rearrangement of the N-methyltetrahydroberberinium salt (1) with phenyllithium.⁵⁾ We have independently examined the Stevens rearrangement of the N-methyltetrahydroprotoberberinium iodide (3).⁶⁾ Their results⁵⁾ prompted us to report the synthesis of the ochotensine type 1-spiroisoquinoline (4) by the base-induced rearrangement in this paper. The reaction of 3 with sodium methylsulfinylmethanide in dimethyl sulfoxide (DMSO) afforded the 1-spiroisoquinoline (4) in 80% yield, mp 122—123°, the molecular formula, $C_{22}H_{27}$ - NO_4 , of which was established by mass spectral (M⁺, m/e 369) and elemental analysis. Its nuclear magnetic resonance (NMR) (CDCl3) spectrum showed two singlets at 3.20 and 3.33 ppm attributable to C_8 - H_2 and C_{13} - H_2 . The N-CH₃ signal appeared at 2.22 ppm. The ¹³CNMR $(CDCl_3)$ spectrum also supported the structure (4); 26.95 (C₅), 38.21 (N-CH₃), 45.96 (C₈ and C₁₃), $48.34 (C_6)$, $56.03 (4 \times OCH_3)$, $69.01 \text{ ppm } (C_{13a})$. Treatment of the methiodide (5), mp $204-205^{\circ}$, prepared by the usual way, with sodium methylsulfinylmethanide gave the methine base (6). The NMR (CDCl₃) spectrum of 6 showed a methylene signal at 3.67 ppm and olefinic and aromatic signals at 6.75 (2H), 6.80 (1H), 6.92 (1H), and 7.02 (1H) ppm. These signals indicated the presence of a indene system in the methin base (6). The methiodide (7), obtained on treatment of 6 with methyl iodide, was heated in ethanolic sodium hydroxide to give 8, mp $104-105^{\circ}$, $C_{21}H_{22}O_4$ (M+, m/e 338). The structure of the des-N methine (8) was supported by a methylene signal at 3.70 ppm and two pairs of doublets, characteristic of styrens, at 5.17 (1H, J=10, 2 Hz) and 5.53 ppm (1H, J=17, 2 Hz) observed in its NMR (CDCl₃) spectrum. Therefore the product from the N-methyltetrahydroprotoberberinium iodide (3) was proved to be the 1-spiroisoquinoline (4). Acknowledgement We are grateful to Mr. S. Suzuki and Miss K. Maeda for microanalyses, Mr. Y. Shida for measurement of mass spectra. Tokyo College of Pharmacy 3-20-1, Kitashinjuku, Shinjuku-ku Tokyo Received February 4, 1975 SHINZO KANO TSUTOMU YOKOMATSU EIJI KOMIYAMA SATORU TOKITA YOUKO TAKAHAGI SHIROSHI SHIBUYA ⁵⁾ Y. Kondo, T. Takemoto, and K. Kondo, Heterocycles, 2, 659 (1974). ⁶⁾ S. Kano, T. Ogawa, E. Komiyama, T. Yokomatsu, Y. Takahagi, and S. Shibuya, Abstracts of the 7th ongress of Heterocyclic Chemistry, Chiba, Japan, 1974, p. 181.