217. A Convenient High Yield Version of the Ester Claisen Rearrangement

Preliminary Communication

by Martin Petrzilka

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

(16.VIII.78)

Summary

Regiospecific addition of benzeneselenenyl bromide to ethyl vinyl ether followed by alcoholysis of the initially formed β -bromoalkyl selenide 1 by primary, secondary or tertiary allylic alcohols 2a-e gave the mixed acetals 3a-e. Subsequent oxidation and thermal treatment of the corresponding selenoxides 4a-e furnished after saponification the γ , δ -unsaturated acids 7a-e in excellent overall yields. The entire sequence (Scheme 2) represents a new version of the ester Claisen rearrangement.

Since its discovery in 1912 [1] several new variations of the *Claisen* rearrangement have been introduced for synthesis¹). Among these the ortho ester process developed by *Johnson et al.* [4] and the allyl ester enolate rearrangement developed by *Arnold et al.* [5] and *Ireland et al.* [6] have served successfully for the preparation of γ , δ -unsaturated esters and acids. The present communication describes another procedure which provides access to the requisite ketene acetal, the key intermediate of the ester *Claisen* rearrangement (*Scheme 1*).

Although the addition of phenylselenenyl halides to internal [7] and terminal olefins [8]²) is a well established process, similar reactions with enolethers have, to our knowledge, not been reported³). Addition of ethyl vinyl ether (1.65 mol-equiv.) to benzeneselenenyl bromide [10] (1.5 mol-equiv.) in dry THF at 25° followed by addition of a solution of β -methallylalcohol **2d** (1 mol-equiv.) and disopropylamine (1.65 mol-equiv.) in dry THF furnished after chromatography⁴) (alumina activity

For recent reviews see [2] [3].

²) The degree of regionselectivity in the formation of β -haloalkyl phenylselenides is dependent on the leaving group X = Cl, Br, the solvent and the reaction temperature [8a].

³⁾ For a recent comprehensive review article on modern organoselenium chemistry see [9].

⁴⁾ This purification step serves mainly to remove some diphenyldiselenide which is formed during the reaction. If omitted, however, it has no significant influence on the overall yield of acids 7a-e.

Scheme 2

III) the phenylselenide $3d^5$) in 99% yield (Scheme 2)⁶) ⁷). Characteristically these oily mixed acetals 3a-e exhibit in their NMR. spectra a triplet (J=6 Hz, 1H) at $\delta \sim 4.8$ ppm due to the acetal proton and a doublet (J=6 Hz, 2H) at $\delta \sim 3.15$ ppm due to the two protons next to the phenylseleno group. Subsequent oxidation using NaIO₄ (1.5 mol-equiv.) and NaHCO₃ (1.1 mol-equiv.) in MeOH/H₂O 6:1 (1 h/25°) afforded the corresponding selenoxide $4d^5$) as a colourless viscous oil in quantitative yield. Unlike other primary alkyl selenoxides carrying no β -heteroatom substituents the compounds 4a-e are remarkably stable and may be stored for weeks at ambient temperature without any decomposition. This is certainly due to a strongly retarded syn elimination of benzeneselenenic acid towards the two β -alkoxy substituents⁸). However, under more forcing conditions, i. e. heating the selenoxide 4d in refluxing m-xylene (b. p. 139°) in the presence of hexylamine⁹) (3 mol-equiv.) and dry MgSO₄ (500 mg/mmol) for 4 h clean elimination of benzeneselenenic acid occurred to give the ethyl ester 6d, the Claisen rearrangement product of ketene acetal 5d; this,

⁵⁾ All new compounds possessed IR., NMR. and mass spectral data consistent with their assigned structures.

⁶⁾ Neat ethyl vinyl ether (1.65 mmol) was added at once to a solution of benzeneselenenyl bromide [10] (1.5 mmol) in 10 ml of dry THF at 25°. Immediately afterwards a solution of β-methallyl alcohol (1 mmol) and diisopropylamine (1.65 mmol) in 2 ml of dry THF was added over 1 min to the vigorously stirred, clear yellow solution. A voluminous white precipitate was quickly formed. After stirring an additional 10 min the reaction mixture was poured into aq. NaHCO₃-solution and extracted with ether. The organic layers were washed with water and brine, dried over K₂CO₃ and concentrated in vacuo. Chromatography on alumina activity III with hexane (until the yellow diphenyldiselenide was eluted) and hexane/ether 8:1 afforded 3d⁵) (99%).

⁷⁾ The corresponding regioisomer was not observed under these conditions.

For a kinetic study of the effect of α - or β -substituents on the rate of selenoxide syn elimination see [11].

⁹⁾ This base was added to prevent any *Pummerer*-like reactions [10].

Starting allylic alcohol		Selenide Yielda)		Selenoxide Yielda) Acid			Yield ^a)	
но	2a	3a	100%	4a	93%	/ СООН	7a	78%
H0 💉	2b	3b	93%	4b	99%	соон	7 b	95%
но	2c	3c	87%	4c	95%	Соон	7 c ^b)	80%
но	2d	3d	99%	4d	100%	Соон	7d	96%
но	2e	3e	81%	4e	96%	Соон	7e	100%

Table. Yields of the γ , δ -unsaturated acids 7a-7e and their precursors

without isolation, was directly saponified¹⁰) (aq. 2n KOH) to afford 4-methyl-4-pentenoic acid (7d) in 96% yield¹¹).

This new procedure for the preparation of γ , δ -unsaturated acids has also been successfully applied to secondary (2c) and tertiary (2e) allylic alcohols. These results are summarized in the above *Table*.

In addition, a cyclic enolether, dihydropyran 8, was briefly examined as a possible precursor to the a-substituted lactone 10 (Scheme 3). However, if the selenoxide 9, prepared according to the given procedure (vide supra), was heated for 5 min in refluxing CCl_4 in the presence of $CaCO_3$ the substituted 3,4-dihydropyran 11⁵) was formed exclusively (91%). This demonstrates that, if possible, elimination away from the heteroatoms is clearly favoured (see also [11]).

a) Yields are based on isolated products. b) No Z-isomer was detected.

¹⁰⁾ This saponification step was added since the fruity smelling ethyl esters 6a-e proved to be rather volatile compounds and could not be separated easily from the solvent.

¹¹⁾ A mixture of selenoxide 4d (1 mmol), hexylamine⁹) (3 mmol) and dry MgSO₄ (500 mg) in 10 ml of m-xylene was heated under reflux for 4 h. Then 12 ml of 2n KOH were added and refluxing was continued for 12 h. The separated aq. phase was acidified with conc. HCl-solution and extracted with dichloromethane. Drying (MgSO₄) and concentration in vacuo afforded pure 7d⁵) (96%).

The described three-step procedure for the preparation of γ , δ -unsaturated esters or acids offers a convenient alternative to the standard methods and allows for the isolation of a stable masked ketene acetal intermediate 4^{12}).

I wish to thank Mr. J.-P. Saulnier and Mrs. F. Klöti for careful ¹H-NMR. and mass spectra measurements.

REFERENCES

- [1] L. Claisen, Ber. deutsch, chem. Ges. 45, 3157 (1912).
- [2] G.B. Bennett, Synthesis 1977, 589.
- [3] F. E. Ziegler, Accounts chem. Res. 10, 227 (1977).
- [4] W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T. Li, D. J. Faulkner & M. R. Petersen, J. Amer. chem. Soc. 92, 741 (1970).
- [5] R. T. Arnold & C. Hoffmann, Synth. Commun. 2, 27 (1972).
- [6] a) R.E. Ireland & R.H. Mueller, J. Amer. chem. Soc. 94, 5897 (1972); b) R.E. Ireland & A.K. Willard, Tetrahedron Letters 1975, 3975.
- [7] a) D. L. J. Clive, Chem. Commun. 1973, 695; b) K. B. Sharpless & R. F. Lauer, J. org. Chemistry 39, 429 (1974); c) H. J. Reich, J. org. Chemistry 39, 428 (1974); d) G. H. Schmid & D. G. Garrett, Tetrahedron Letters, 1975, 3991; e) D. G. Garrett & G. H. Schmid, J. org. Chemistry 42, 1776 (1977); f) K. C. Nicolaou & Z. Lysenko, J. Amer. chem. Soc. 99, 3185 (1977).
- [8] a) S. Raucher, J. org. Chemistry 42, 2950 (1977), Tetrahedron Letters 1977, 3909; b) T. Takahashi, H. Nagashima & J. Tsuji, Tetrahedron Letters, 1978, 799.
- [9] D. L.J. Clive, Tetrahedron 34, 1049 (1978).
- [10] H.J. Reich, J.M. Renga & I.L. Reich, J. Amer. chem. Soc. 97, 5434 (1975).
- [11] H.J. Reich, S. Wollowitz, J.E. Trend, F. Chow & D.F. Wendelborn, J. org. Chemistry 43, 1697 (1978).

¹²⁾ If desired, expensive diphenyldiselenide may be recovered in a large part.