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Pd-Catalyzed Cycloaddition of Vinylcyclopentenes with Trimethylenemethane.
Substituent Effect on [4+3] vs [3+2] Selectivity

Barry M. TROST" and Shoko YAMAZAKI T
Department of Chemistry, Stanford University, Stanford, California 94305-5080, U.S.A.

The Pd-catalyzed reaction of 2-vinylcyclopentenes 2 and 3 with trimethylenemethane
gave [4+3] and [3+2] cycloadducts. Derivatization of 2-vinylcyclopentenones with bulky
ketal substituents served to enhance seven-membered ring formation.

Construction of seven-membered rings is an important challenge since they are found in a wide range of
natural products, including, for example, hydroazulene frameworks.!) Compared to five- and six-membered
rings, general methods for seven-membered ring synthesis are. relatively few.2) A [4+3] cycloaddition reaction
conceptually is an efficient synthetic method for formation of seven-membered rings.3) Recently, we reported
that Pd-catalyzed [4+3] cycloadditions of trimethylenemethane (TMM) leads to hydroazulene derivatives.®) The
approach involves a 1,2-dimethylene cyclopentane, which is restricted to the cisoid conformation, as a C4 diene
partner (eq 1). The generalization of this strategy depends upon its extention to conformationally more mobile
dienes. As part of our efforts to further develop and extend this Pd-catalyzed [4+3] cycloaddition methodology,

we have investigated the possibility of a [4+3] cycloaddition of the type shown in eq 2.
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Compared to the 1,2-dimethylenecyclopentane, the vinylcyclopentene may prefer [3+2] cycloaddition
rather than [4+3] cycloaddition since the diene part is not restricted to a cisoid conformation. For example, Pd-
catalyzed reaction of dimethyl (E, E)-muconate with TMM gave a 1 : 1.1 mixture of seven- and five-membered
rings,?) while the 1,2-dimethylenecyclopentanes gave ratios of 2.4 : 1 to 36 : 1 for seven- and five-membered
rings respectively.4) However, considering the proposed stepwise mechanism of the cycloaddition,4,6)
introduction of a bulky group at position b may enhance [4+3] selectivity (eq 3). In this report, we have
examined the effects of carbonyl, ketals, and silicon-protected alcohol substituents at b'-position of a
vinylcyclopentene on [4+3] vs [3+2] selectivity (eq 2).
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The cyclopentenenone 1 and its derivatives 2, 3 and 13 were chosen because of their synthetic versatility
for further elaboration of functional groups to natural products. Sterically hindered ketal and bulky silicon-
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protected alcohol groups are expected to favor a cisoid conformation in the diene substrates. In addition to the
steric effects, the electronic effect of a carbonyl group and its derivatives on [4+3] vs [3+2] selectivity are also of
interest.

The preparation of substrates 1-3 and 13 was carried out according to the following scheme. The
ethylene glycol ketal 4, which is readily available according to the literature procedure,7) was oxidized with
chromium trioxide-pyridine in methylene chloride to give 2-formylcyclopentenone ethylene ketal 58) in 61%
yield. The reaction of 5 and trimethylphosphonoacetate in the presence of lithium chloride and DBU gave methyl
ester 28) in 64% yield. Treatment of 2 with oxalic acid in methylene chloride - water gave 1 8) quantitatively (eq
4). Direct conversion of 1 to sterically hindered ketal 3 with 2,2-dimethylpropan-1,3-diol was unsuccessful.
Therefore, 38) was prepared by the same procedure as for 2 (eq 5).
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Silicon-protected alcohol 1 3 was prepared as follows (eq 6). Reduction of 1 with sodium borohydride-
cerium chloride gave a mixture of products, consisting of the desired alcohol 14, the 1,4-reduced dihydro
compound 1 5, and another impurity (NMR analysis). Column chromatography failed to give the alcohol 14 in
pure form. After treatment of the crude mixture with t-butyldiphenylchlorosilane, a 22% yield from 1 of desired
compound 1 38) could be separated after column chromatography.
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For the cycloaddition- reactions of 1-3 and 13,9,10) the dienes and TMM precursor 6 or 7 were
subjected to 5 mol% of a Pd(0) catalyst pre-generated by treating 5 mol% palladium acetate with 35 mol%
triisopropy! phosphite (12.5 mol% 1,3-bis(diphenylphosphino)propane in entry 5) and 10 mol% of buty! lithium
at room temperature. The results are listed in Table 1. Cycloaddition of 1 with 6 (1 equiv) in THF (60 °C, 1.5
h) gave only the five-membered ring cycloadduct 88) in 69% yield (entry 1). While the initial addition occurred
as required for [4+3] cycloaddition, the regioselectivity of the second step reflects the normal kinetic preference
for five to seven membered ring formation. Reaction of 2 with 6 (1 equiv) in THF (60 °C, overnight) gave
mainly recovered starting ketal 2 and trace amounts of a mixture of seven- and five-membered products 9 and 10
(entry 2). Reaction of 2 with 6 (2 equiv) in toluene (110 °C, 6 days) gave a mixture of seven- and five-
membered compounds 9 and 10 in 56% yield, accompanied by recovered 2 (19%) (entry 3). The ratio of seven-
and five-membered ring products was 1 : 1.5. Better product yield was obtained by using an excess amount of
the TMM precursor 7. Thus, reaction of 2 and 7 (4 equiv) in THF (60 °C, overnight) gave 98) and 108) easily
separated by column chromatography in 87% yield (9 : 10=1: 1.2) (entry 4). Cycloaddition of ketal 3 with 7
(2 equiv) in THF (60 °C, 6 h) gave a mixture of 1 18,11) and 128,12) als0 separable by column chromatography
in 81% yield (entry 7). The ratio of seven- and five-membered ring products was 1.5 : 1. Thus, the more
sterically hindered ketal 3 favors the seven-membered ring. However, in the presence of an excess amount of
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TMM precursor 7, longer reaction times reduce the yield of 11, probably because further reaction occurs (entry
8, see also entry 6). By NMR analysis, both 9 and 11 were >9:1 single diastereoisomers.

Crude NMR of the cycloaddition reaction mixture of 13 with TMM-PdL? shows that the mixture
possibly contained both five- and seven-membered ring cycloadducts (entry 10). In addition, diastereomers of
each were present. However, these products could not be purified by column chromatography or preparative
GC. Only a 7% yield of the five-membered ring adduct 1 6 (single diastereomer)8) was isolated.

The structure of the seven- and five-membered cycloadducts were assigned as follows. 1H NMR spectra
of 9 and 11 show one olefinic proton (d 6.20 for 9, d 6.45 for 11) in addition to two exocyclic methylene
protons at d 4.79-4.83. The protons « to the ester appear at d 3.15 for 9 and d 3.12 for 12. The carbonyl
frequencies for the saturated esters appear at 1735 cm-1 for 9 and 1730 cm-1 for 11. On the other hand, 1H
NMR spectra of 8, 10, 12 and 1 6 show two doublets corresponding to olefinic protons coupled to each other (O
5.85,6.96,) = 16 Hz for 8, d 5.82, 7.23,J = 16 Hz for 10, 3 5.79, 7.46,J = 16 Hz for 12, d 5.71, 6.89, J =
15.8 Hz for 1 6) in addition to two exocyclic methylene protons at & 4.84-4.91. The carbonyl frequencies of 8,
10, 12 and 16 for the unsaturated esters appear at 1702-1720 cm-1. The 1H NMR spectra of 9 and 11 also
exclude the possibility of the alternate [3+2] cycloadducts (B-attack products) 1 7; the chemical shifts of the exo
methylene protons are characteristic of a seven-membered ring and the protons a to the ester are in the region of
the seven-membered allylic ester obtained previously (d 3.1-3.4).4,5) Compound 18 for comparison shows d
4.92 for exo methylenes and d 3.02 for the a proton of the non-allylic saturated ester.
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Table 1. Pd-Catalyzed Cycloaddition Reactions of 1-3 and 1 3 with TMM
Entry Substrate Conditions Product
6 (1 equiv), THF, 60 °C, 1.5 h 8 (69%)

6 (1 equiv), THF, 60 °C, overnight recovered 2, 9 (trace), 1 0 (trace)

6 (2 equiv), toluene, 110 °C, 6 days recovered 2 (19%), 9 (22%), 10 (34%)
7 (4 equiv), THF, 60 °C, overnight 9 (39%), 10 (48%)

Pd(0) (12.5 mol% dppp), 7 (6 equiv), 9 (37%),10(45%)

THF, 60 °C, 24 h

7 (1 equiv), THF, 60 °C, 2 days, then 11 (40%), 12 (28%)

7 (0.4 equiv), 1 day, then 7 (0.3

equiv), 1 day, then 7 (0.2 equiv), 1 day
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7 3 7 (2 equiv), THF, 60 °C, 6 h 11(48%),12 (33%)

8 3 7 (2 equiv), THF, 60 °C, overnight 11(26%),12 (38%)

9 13 7 (2 equiv), THF, 60 °C, 2 days, then  recovered 1 3, a small amounts of products (not
7 (2 equiv), 1 day purified)

10 13 7 (4 equiv), THF, 60 °C, 3 days complex mixture, 16 (7%) was isolated.

11 13 7 (6 equiv), THF, 60 °C, 4 days decomposition

Derivatization of a 2-vinylcyclopentenone with bulky ketal substituents does serve to enhance seven-
membered ring formation. The effect likely derives from a combination of both electronic and steric effects.
Although the [4+3] vs [3+2] selectivity is not yet high enough, the total yield of the cycloaddition is good and
seven-membered ring product yield is therefore modest. Also, ketals have the potential for asymmetric induction
in this cycloaddition reaction by making them chiral. These studies suggest opportunities for further
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improvement of the [4+3] vs [3+2] cycloaddition by structural variation of the acceptor - especially the ketal unit -
and perhaps by ligand variation in the donor TMM-PdL? complexes. However, for more efficient and successful

design of the substrates, determination of the structure of the proposed zwitterion intermediate would be helpful.

Extensions of this strategy are presently being evaluated.
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