
Pergamon 

0040-4039(95)00728-8 

Tetrahedron Letters, Vol. 36, No. 24, pp. 4265-4268, 1995 
Elsevier Science Lid 

Printed in Great Britain 
0040-4039/95 $9.50-I-0.00 

Asymmetric Catalytic Reduction of meso-Imides 

Jahyo Kang*, Jun Won Lee, Joo In Kim and Chongsuh Pyun 

Department of  C heraistry, Sogang University, Seoul 121-742, Korea 

Abstract: A thiazazincolidine complex, 1. was shown to be an excellent catalyst for 
enantioselective reduction with bis(2,6-dimethylphenoxy)borane (BDMPB) of meso N-phenylimides 
in high ee to the corresponding hydroxy lactams, which were eventually converted to the 
eogresponding laetones of high optical purity. 

Chiralization of meso compounds is interesting in that all the compounds are enantioselectively 

converted without waste to optically active compounds with correct stereochemistry. 1 In this regard, 

enantioselective reduction of meso dicarboxylic acids to the corresponding enantiopure lactones would 

certainly be one of such targets. Chiral lactones as building blocks for synthesis z have been prepared by 

enzymatic oxidation of meso diols) Alternatively, Matsuki reported the enantioselective reduction of meso 

carboxylic acid derivatives which has been achieved by reduction of cyclic meso anhydrides and imides 

with BINAL-H, a stoichiometric reagent: Recently, Speckamp reported an enantioselective reduction of 

meso N-benzyl imides with borane in the presence of an oxazaborolidine cata lys t :  However, the 

enantioselectivities were only moderate (60-72%) even with a large amount of the catalyst (50 mol %). 

Previously, a thiazazincolidine complex, 1, prepared in situ from (IR, 2S)-(-)-1-phenyl-2-(1-piperidino)- 

1-propanethiol and diethylzinc, was shown to be an excellent catalyst for enantioselective addition of 

dialkylzinc to aldehydes through enantioselective blocking of a specific prochiral face of coordinated 

aldehyde: Thus, efforts were made to utilize such a enantiodiscriminative coordination of earbonyl groups 

for enantioselective reduction of cyclic meso imides with a reducing agent in the presence of the 

thiazazincolidine complex 1 as a catalyst. 

Enantioselective reduction of the meso N-alkylimide 2 ~'s even with excess of the reducing reagents 

gave the monoreduction product 3, which was further reduced to the corresponding hydroxy amide with 

NaBH 4 followed by acid-catalyzed lactonization 9 to give the lactone 4 (Scheme 1). Among the various 

N-alkyl groups of the imides examined, it was found that, with [bis(2,6-dimethyphenoxy)borane)], 
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BDMPW u, the best N-alkyl group was phenyl group: 48% ee (68% yield of lactone 4: 1R, 23) with R = 

PhCH 2, 86% ee (65% yield) with R = Ph, 84% ee (72% yield) with R = 2-MeCcq o 73% ee (50% yield) with 

R = 2,6-Me2C~H 3, and 50% ee (64% yield) with R = 2,6-C12C6I-I~. Consequendy, it was thought that the 

conformation of the substrates at the transition state was such that the two rings bisected each other (Figure 

1), which might facilitate enantioselective coordination of a Lewis acid to a specific enantiotopic carbonyl 

oxygen. 

SCHEME 1 Figure 1. Chern-3D 
Presentation of 2 (R=Ph) 

H O H OH H , ~ ) , t ~  ^O,~r~ 

~ H  Io reducing agent ~H,  O I"NaBH4 [~H ~ N-R - N-R " O 
1 (cat) 2. H2SO 4 

O 
2 3 4 

Among various reducing agents examined such as borane.THF, catechol borane etc., BDMPB, [bis(2,6- 

dimethylphenoxy)borane)], t° gave best enantioselectivity with good yields in toluene: 81% ee (72% yield of 

the lactone 4) in the presence of 10 tool % of the catalyst 1; 84% ee (69% yield) in the presence of 20 tool % 

of the catalyst; 86% ee (77% yield) in the presence of 30 mol % of the catalyst; and 86% ee (65% yield) in 

the presence of  50 tool % of the catalyst. Thus, while the yields were almost the same with decrease in the 

amount of the catalyst 1, enantioselectivity decreased only slightly. Consequently, 20 mole % of catalyst 

seemed to be appropriate in normal cases without much sacrifice in enantioselectivity. Under this standard 

condition [BDMPB (2 equiv.), toluene, 20 mol % of 1], various cyclic meso imides 7 were reduced 

enantioselectively to the corresponding lactones via the 3-step sequence shown in Scheme 1. ~ The results 

are summarized in Table 1. 

Between the two possible transition states 14 and 15, the complex 15 with anti arrangement of donor 

(N of imide) and acceptor (Zn) atoms and with the phenyl group stretching away from the stericaUy 

congested space must be more stable both electronically and stericaUy (Scheme 2). Moreover, the bulky 

nucleophile should attack selectively the indirectly activated carbonyl carbon rather than the directly 

coordinated carbonyl group, leading to the lactone 16, even though the latter has been claimed to be more 

reactive than the alternative carbonyl group in literature.t3 
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Table 1. Reduction of N-Phenylimides with BDMPB in the Presence of the Catalyst 1. 

Starting Reaction Product (Lactone) 
Material Temp(°C) Structure Ee" Yield b Config. 
H O 

N-Ph (2) -I0 0 

H 0 H ~ l - P h  (6) -10 ~ H  ~) 

0 (7) -10 
-Ph 

O~N?Ph (8)f -10 O ~  0 

. O 

-Ph (9) O-rt H~~ ) 
I O 

'r H H~O~I'Ph (I0) 

84% 69% (1R, 2S) 

96% 72% (IR, 6S) 

95% 61% (2R, 3S) 

82% 69% (2R, 3~ 

70% 50% (2S, 3R) 

0-rt 83% 56% (2S, 3R) 

H H 

(ll) -I0 
O- • C 

O 

P h - - ~ N - P h  (12) -10 P t v , . . ~ )  

82% 92% (2R, 3S) 

99% 83% (3R) 

Optical Rotation, [oq25 v 

-46.6 (e 0.56, cI-IC~) o 

+45.1 (e 1.1, CHCh) d 

-120.5 (c 0.9, CHC~)" 

-124.4 (c 5.2, CHCIo)S 

-78.5 (c 1.0, CHCIs) h 

-128.9 (c 1.0, CHC13) t 

-33.0 (c 11.0, CHCIsy 

-3.8 (c 1.0, CHCI3)* 

b 25 3c ~By GC with a Ofiraldex G-TA chiral column. Isolated yield. %iL for (1S, 2R) isomer of 100% ee [a] v +48.8 (c 0.5, CHCls). 
4LiL for (IS, 6R) isomer of 100% ee [a]~D -67.1 (C 1, CHCI3). k °LiL for (2S, 3R) isomer of >97% ee [a]25n +123.7 (c 0.84, 
CHCls). u fWith 50 tool % of catalyst L SLiL for (2S, 3R) isomer of >97% ee [CqZSD +143.2 (C 5.2, CHCI3).~LiL for (2R, 3S) 
isomer of >98% ee [a]2sn +111 (c 1, CHC13).12 iLiL for (2S, 3R) isomer of >98% ee [~z]2s o -153.5 (c 1, CHCL~).12JLit. for (2S, 3R) 

25"- ~k 2 5  ,36 isomer of l00% ee [a] D+39.9(CI1.3,CHCIs). LiLfor(3S)isomerof16%ee[cq D+0.8(cI ,  CHCls). 
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