STRUCTURES OF THE PRODUCTS OF REACTION OF

1,5-DIKETONES WITH HYDROXYLAMINE

V. K. Gamov, V. A. Kaminskii, and M. N. Tilichenko

UDC 547.835.2:541.63

Alkylidenebis-2,2'-cyclohexanones react with two molecules of hydroxylamine to give 8-hydroxy-1,2,4,5-bistetramethylene-7-oxa-6,8-diazabicyclo[3,2,1]octanes, whereas 5,5'-methylene-2,2-dimethyl-4-pyrone and "semicyclic" and aliphatic-aromatic 1,5-diketones form dioximes.

2,2'-Alkylidenedicyclohexanones (Ia-c) react with 2 moles of hydroxylamine to give 8-hydroxy-1,2,4,5-bistetramethylene-7-oxa-6,8-diazabicyclo[3.2.1]octanes (IIa-c) rather than dioximes, as was previously assumed [1,2]. Two stereoisomers of IIa corresponding to the two forms of diketone Ia were isolated. β -Isomer IVa is formed from the racemic form of Ia, whereas a mixture of the racemic and meso forms gives a mixture of two isomers, from which α -isomer IIa was isolated.

I, II a R = H; b $R = CH_3$; c $R = C_6H_5$

Absorption of the C=N bond at 1600-1700 cm⁻¹ is absent in the IR spectra of IIa-c; in addition to the absorption of an associated hydroxyl group at 3100-3200 cm⁻¹, there is a narrow peak at 3220 cm⁻¹, which is related to the NH group. A similar pattern is observed in the spectrum of the product of the reaction of glutaraldehyde with 1 mole of hydroxylamine, for which the 7,8-dioxa-6-azabicyclo[3.2.1]octane structure, which is similar to the structure of II, was established [3].

The corresponding O,N-diacetyl derivatives (α - and β -IIIa) are formed by the action of acetic anhydride in pyridine on the α - and β -isomers of IIa. Their IR spectra contain intense absorption bands of ester (1780 cm⁻¹) and amide (1670 cm⁻¹) carbonyl groups. Stereoisomeric N-hydroxyperhydroacridines IVa are formed in the reduction of the α - and β -isomers of IIa and IIIa with NaBH₄ in alcohol [4]. transsyn-trans-Isomer α -IVa is formed from the α -isomers, whereas primarily trans-anti-cis-isomer β -IVa is formed from the β -isomers, along with a small amount of α -IVa. Their configurations were confirmed [4] by conversion to the α - and β -perhydroacridines, the configurations of which are known. The results obtained make it possible to propose a trans-syn-trans configuration for the α -isomer of IIa and a transanti-cis configuration for the β -isomer.

Far-Eastern State University, Vladivostok. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1525-1526, November, 1974. Original article submitted March 9, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Products of the Reaction of 1,5-Diketones with Hydroxylamine

Com-	mp, °C	Crystalliza- tion solvent	Empirical formula	Found, %			Calc., %			Yield,
pound				С	Н	N	С	Н	N	%
α-IIa β-IIa IIb IIc α-IIIa β-IIIa VI X XI	.180—181 * 160—161 † 180—182 ‡ 193—195 140—141 173—174 200—202 136—138 180—181 153—154 **	Dioxane Ethyl acetate Dioxane Methanol 40% Ethanol Ethanol Benzene Propanol Benzene	C ₁₃ H ₂₂ N ₂ O ₄ C ₁₃ H ₂₂ N ₂ O ₄ C ₁₄ H ₂₄ N ₂ O ₂ C ₁₉ H ₂₆ N ₂ O ₂ C ₁₇ H ₂₆ N ₂ O ₄ C ₁₇ H ₂₆ N ₂ O ₄ C ₁₅ H ₂₆ N ₂ O ₄ C ₁₅ H ₂₆ N ₂ O ₄ C ₁₅ H ₂₆ N ₂ O ₂ C ₂₁ H ₂₄ N ₂ O ₂ C ₂₁ H ₂₄ N ₂ O ₂ C ₂₃ H ₂₂ N ₂ O ₂	65,6 65,5 66,4 73,2 63,2 63,9 60,6 69,4 74,5 77,1	9,2 9,4 9,9 8,4 8,1 8,4 8,7 8,0 7,6 6,6	11,8 12,0 111,3 8,8 8,8 8,7 9,5 10,4 8,2 7,9	65,5 65,5 66,7 72,6 63,4 63,4 60,4 69,2 75,0 77,1	9,2 9,5 8,3 8,1 8,1 8,7 7,7 7,1 6,1	11,8 11,8 11,1 8,9 8,7 8,7 9,4 10,8 8,3 7,8	7,8 * 87 51 21 44 21 22 86 95 91

^{*} Isolated by fractional crystallization from a mixture of α -IIa and β -IIa; mp 190-191° [1] and 179-183° [5].

5.5'-Methylenebis-2.2-dimethyl-4-pyrone (V) forms a dioxime (VI), evidently because of the fact that in the tetracyclic form analogous to structure II, 1.3-repulsion should develop between the axial CH₃ groups and the O-NH fragment.

"Semicyclic" 1,5-diketones, namely, 1-phenyl-3-2-oxocyclohexyl)-1-propanone (VII) and 1,3-diphenyl-3-(2-oxocyclohexyl)-1-propanone (VIII), and the aliphatic-aromatic benzylidenediacetophenone (IX) give dioximes (X-XII). Their IR spectra contain the absorption band of a C=N bond at 1650-1670 cm⁻¹ but do not contain the narrow absorption peak of the NH bond at 3220 cm⁻¹ characteristic for II.

EXPERIMENTAL

Condensation of 1,5-Diketones with Hydroxylamine. Diketone IIIc was synthesized by the method in [6]. A solution of 0.7 mole of hydroxylamine hydrochloride and 53 g of Na_2CO_3 in 100 ml of water was added to a solution of 0.35 mole of the diketone in 300 ml of ethanol. After 3 h,* the precipitate was removed by filtration, washed with ethanol and water, and recrystallized. See Table 1 for information concerning the products.

Reduction of α - and β -IIa and IIIa. A 0.01-mole sample of the compound in 90 ml of alcohol was reduced with 0.06 mole of sodium borohydride. According to thin-layer chromatography [Al₂O₃, petroleum ether-ethyl acetate (1:1), only α -IVa is formed from α -IIa and IIIa, whereas β -IVa and traces of α -IVa are formed from the β -isomers. The IR spectra of the products of the reduction of IVa were identical to the spectra of genuine samples.

LITERATURE CITED

- 1. A. Palsky, J. Huet, and J. Dreux, Comptes Rend., C, 262, 1543 (1966).
- 2. M. N. Tilichenko, Uch. Zap. Sarat. Gos. Univ., 75, 60 (1962).
- 3. G. Eikelmann, W. Heimberger, G. Nonnenmacher, and W. Weigert, Ann., 759, 183 (1972).
- 4. V. K. Gamov, T. V. Tropina, V. A. Kaminskii, and M. N. Tilichenko, Khim. Geterotsikl. Soedin., 1145 (1973).
- 5. J. Kondelikova, J. Kralicek, J. Smolikova, and K. Blaha, Coll. Czech. Chem. Commun., 38, 523 (1973).
- 6. V. I. Vysotskii, N. V. Vershinina, M. N. Tilichenko, V. V. Isakov, and T. M. Belokon', Zh. Organ. Khim., 9, 2427 (1973).
- 7. I. Wislicenus and R. Newmann, Ann., 302, 242 (1898).

 $[\]dagger$ Literature mp 130° [1] and 159-164° [5].

[‡] Literature mp 164-167° [2].

^{**} Literature mp 163.5° [7].

^{*}Refluxing for 15 min and 6 h, respectively, is required for the preparation of dioximes VI and X.