state is again in accordance with the idea that ring closure to a diaziridine is favoured in the first excited state as also indicated by the PPP calculation. This work is part of project No. SR 2.120.69 of the Schweizerischer Nationalfonds. Financial support by CIBA-GEIGY AG and a generous gift of computer time from SANDOZ AG are gratefully acknowledged. #### BIBLIOGRAPHY - [1] J. Streith, A. Blind, J. M. Cassal & C. Sigwall, Bull. Soc. chim. France 1969, 948; J. Streith & J. M. Cassal, Angew. Chem. 80, 117 (1968); ibid. Int. Ed. 7, 129 (1968); Tetrahedron Letters 4541 (1968); J. Streith & C. Sigwall, Bull. Soc. chim. France 1970, 1157. - [2] J. Streith & J. M. Cassal, Bull. Soc. chim. France 1969, 2157. - [3] J. Michl, E. W. Thulstrup & J. H. Eggers, J. physic. Chemistry 74, 3878 (1970) and preceding papers. - [4] N. Mataga & K. Nishimoto, Z. physikal. Chem. (Frankfurt) 13, 140 (1957). - [5] R. Hoffmann, J. chem. Physics 39, 1397 (1963); R. Hoffmann & W. N. Lipscomb, ibid. 36, 2179, 3489 (1962); ibid. 37, 2872 (1962) and subsequent papers. - [6] C. Kaneko, S. Jamada & I. Yokoe, Tetrahedron Letters, 2333 (1970); Y. Kobayashi, I. Kumadaki & H. Sato, ibid. 2337 (1970). - [7] K. Seibold, G. Wagnière & H. Labhart, Helv. 52, 789 (1969). - [8] M. Yamakawa, T. Kubota & H. Akazawa, Theoret. chim. Acta 15, 244 (1969). - [9] J. P. Luttringer, N. Nastasi, J. Streith, J. org. Chemistry, in press. # 176. Organic Phosphorus Compounds 53 Preparation and Properties of Bis-(chloromethyl)-phosphinic and -thiophosphinic Acid Derivatives as well as Tertiary Phosphine Oxides and Sulfides Containing two ClCH₂ Groups [1] #### by Ludwig Maier Monsanto Research S.A., 8050 Zürich, Eggbühlstrasse 36 (27. V. 71) Summary. Bis-chloromethyl-phosphinates, -thiophosphinates, and -phosphinic amides are formed in fair yield by treating either bis-chloromethyl-phosphinic or -thiophosphinic chloride with alcohols, thiols, or amines in the presence of equivalent amounts of acid binding agents. Unexpectedly, the thiophosphinates show no insecticidal activity and only the β -cumaryl derivative exhibits a low herbicidal activity. Reduction of bis-chloromethyl-thiophosphinic chloride to bis-chloromethyl-phosphinous chloride is effected with $(PhO)_3P$ at 170° . Interaction of this chloride, $(ClCH_2)_2PCl$, with *Grignard* reagents yields tertiary phosphines, which at slightly above room temperature are unstable, but which may be characterized as oxides or sulfides. We [2] and others [3] [4] have recently found an easy method for the synthesis of bis-chloromethyl-phosphinic chloride involving reaction of (HOCH₂)₂P(O)OH with excess SOCl₂ at 80° [3] [2], or with PCl₅ [4]. This chlorination with SOCl₂ effected at room temperature, however, unexpectedly affords bis-chloromethyl-phosphinic anhydride in high yield. Further study of this chlorination shows that the anhydride is also obtained, even at 80°, when only stoichiometric amounts of SOCl₂ are used. At room temperature the rate of reaction of the anhydride with SOCl₂ is extremely slow, | ъ | $(ClCH_2)_2P(O)X$ | |---|--| | | Table 1. Physical properties of bis-(chloromethyl)-phosphinates, | | | | | | | f. cf | maranal ara ta | and Luca Lucan | 3, (00.112)21 (0)21 | | |---|---------------|--|--------------------------------|---|--|---| | X | Yield
in % | m.p. (b.p.) °C
(solvent for crystn.) | solvent
¹ H-NMR. | ¹ H-NMR. in ppi | ¹ H-NMR. in ppm (coupl. const. in Hz) ³¹ P-c | ³¹ P-chem.shift in ppm
(H ₃ PO ₄ as ref.) | | 9 q | 85.6 | (66–72°/0.1 Тот) | CDCl3 | $a \text{ (CICH}_2)$
4.08
$(J_{PCH} = 7.2)$ | b c d | – 49.3 (neat) | | -0 $-NO_2$ CI | 53.5 | 66-67°
(Et ₂ O/hexane) | CDCl3 | 3.95 ($f_{PCH} = 8.2$) | 7.45 8.25 ($J_{HH} = 9$) ($J_{HH} = 9$) | – 39.6
(in CDCl ₃) | | -OC1 | | 52.5–53°
(CHCl ₃ /hexane) | CDC13 | 3.92 ($J_{PCH} = 8.2$) | 7.3 (m) | – 41.6
(in CHCl ₃) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 140-142°
(acetonc/hexane) | CDC]3/
CD3OD | 3.96 ($J_{\text{PCB}} = 8.2$) | 2.4 6.06 6.8 a) $(J_{HH} = 1)$ $(J_{HH} = 1)$ (m) | | | $-\mathrm{N}(\mathrm{CH_3})_2$ | 18.6 | 79.5–80°b)
(benzenc) | CDC13 | 3.79 ($J_{PCH} = 7$) | 2.78 $(J_{PNCH} = 9)$ | – 35.1 (CHCl ₃) | | $-\mathrm{N}(\mathrm{CH_2CH_3})_2$ | 54.5 | $62.9-63.3^{\circ}$ °) (Et ₂ O) | CDCI | 3.73 ($J_{PCH} = 7$) | 1.16 3.18 $(J_{HH} = 7)$ $(J_{HH} = 7)$, $J_{PNCH} = 10.5$ | – 34.2 (CHC1 ₃) | | a) 2047 48 mm (m 1 II) | | | | | | | e at 7.48 ppm (m, 1 H). Lit. [4], m.p. 80–81°. Lit. [4], m.p. 64–65°. G Q G thus even excess $SOCl_2$ produces only the anhydride, if the temperature is kept below 20°C. At higher temperatures ($\sim 80^\circ$) the anhydride is cleaved by $SOCl_2$ to give bis-chloromethyl-phosphinic chloride. These experiments suggest that the chlorination of (HOCH₂)₂P(O)OH with SOCl₂ proceeds in two steps: a) formation of the anhydride, b) transformation of the latter to phosphinic chloride. in two steps. a) formation of the anniyable, b) transformation of the innic chloride. O O $$2 \, (\text{HOCH}_2)_2 \text{P(O)OH} + 5 \, \text{SOCl}_2 \rightarrow (\text{ClCH}_2)_2 \text{P-O-P(CH}_2 \text{Cl)}_2 + 5 \, \text{SO}_2 + 6 \, \text{HCl}$$ I a $$\text{O O}$$ $$(\text{ClCH}_2)_2 \text{P-O-P(CH}_2 \text{Cl)}_2 + \text{SOCl}_2 \rightarrow 2 \, (\text{ClCH}_2)_2 \text{P(O)Cl} + \text{SO}_2$$ I Conversion of bis-chloromethyl-phosphinic chloride to the corresponding thioderivative is readily achieved with $P_2S_5[5][6]$: 5 (ClCH₂)₂P(O)Cl + P₂S₅ $$\rightarrow$$ 5 (ClCH₂)₂P(S)Cl + P₂O₅ This thiophosphinic chloride as well as several of its esters – but not all – show in the 1 H-NMR. spectrum nonequivalence of the protons within the 1 CH₂-groups and give an $A_{2}B_{2}X$ spectrum [Fig.]. The corresponding bis-chloromethyl-phosphinic chloride, its esters, bis-chloromethyl-alkyl-phosphine sulfides, their corresponding oxides, and the thio-amide (CICH₂)₂P(S)NEt₂ do not exhibit such spectra. Although several esters of bis-chloromethyl-phosphinic acid ([2] and ref. cited there) and -thiophosphinic acid [5] have been described in the litterature, the esters containing a substituted phenoxy group or the β -cumaryl residue are unknown. They have now been prepared by conventional methods from the acid chlorides with either the sodium phenolates or thiophenolates, or with phenols in the presence of a tertiary amine (see Tables 1 and 2). $$\begin{aligned} &(ClCH_2)_2P(Y)Cl+NaXR\rightarrow (ClCH_2)_2P(Y)XR+NaCl\\ Y=O,S,X=O,S,R=4-NO_2C_6H_4,4-FC_6H_4,4-ClC_6H_4,\beta\text{-cumaryl} \end{aligned}$$ Unexpectedly, the thiophosphinates showed no insecticidal activity and no, or only very low $(e.g., (CICH_2)_2P(S)O-\beta$ -cumaryl), herbicidal activity. Reduction of bis-chloromethyl-thiophosphinic chloride with triphenylphosphite [7] gave bis-chloromethyl-phosphinous chloride (XV) [6] [8] in 60% yield. $$\begin{aligned} (\text{ClCH}_2)_2 \text{P(S)Cl} + (\text{PhO})_3 \text{P} &\rightarrow (\text{ClCH}_2)_2 \text{PCl} + (\text{PhO})_3 \text{PS} \\ (\text{XV}) \end{aligned}$$ Reaction of this chloride XV with alkyl or aryl *Grignard* reagents at -20° in ethereal solution, gave high yields of bis-chloromethyl-alkyl-, or -aryl-phosphines as evidenced by the isolation of (CICH₂)₂PEt as oxide in 77.6% yield after oxidation with bromine. $$(ClCH_2)_2PCl + RMgBr \rightarrow (ClCH_2)_2PR + MgClBr$$ Like ClCH₂PPh₂ [10] these phosphines also seem to be not very stable. Thus when a sample of (ClCH₂)₂PEt was distilled under reduced pressure at 85°/20 Torr, it solidified and then showed in the NMR. spectrum signals for P-CH₃ and PCH₂P groups. Likewise, when a sample of (ClCH₂)₂PPh was heated to remove benzene and bromobenzene after hydrolysis (see expl.) it then showed in the ¹H-NMR. spectrum signals Table 2. Physical Properties of bis-chloromethyl thiophosphinates $(ClCH_2)_2P(S)X$ | | | | | | ъ | | | |--|---------------|---|--------------------|--|---|--|---| | X | Yield
in % | m.p. (b.p.) °C
(solvent for crystn.) | solvent
1H-NMR. | ¹ H-NMR. in ppm
a | 1 H-NMR, in ppm (coupl. const. in Hz) a | | 31 P-chem.shift in ppm $^{(H_3PO_4)}$ as ref.) | | -C1 | 09 | (46-48°/0.7 Torr) a) | CDCI3 | 4.12 (J _{PCH} = 4.87 , (nonequivalence) | | | -81.9 (neat) | | | 25.5 | 54.5–55°
(Et ₂ O/hexane) ^b) | CDCl ₃ | 3.97 7.25 (nonequivalence) (m) | 7.25 (m) | | – 87.0 (CHCl ₃) | | $-0 - NO_2$ $C_1 \qquad b$ | 57.5 | 76.0–76.3°
(CHCl ₃ /hexane) | CDC13 | 4.05 $(J_{PCH} = 6)$ | 7.29
($J_{HH} = 9$,
$J_{POCCH} = 1.5$) | 8.25 ($J_{HH} = 9$) | – 88.5 (CHCl ₃) | | | 32.5 | 51.8-52.2°
(Et ₂ O/hexane) | CDCI ₃ | 4.08
(freu = 6)
(nonequivalence) | 7.2 (m) | 7.42 (m) | – 89.9 (CHCl ₃) | | q^{i} q^{i | 48.1 | 120–121°
(CHCl ₃ /hexane) | CDCI | 4.04 $(J_{PCH} = 6)$ | $(J_{\rm HH} = 1)$ | 6.25 °) d)
(J нн = 1) | – 88.6 (CHCl ₃) | | | | 50.0–50.5°
(CHCl ₃ /hexane) | CDC13 | 3.94 $(J_{PCH} = 5)$ | $(J_{\rm FH} = 8.7)$
$(J_{\rm FH} = 8.7)$ | 7.5
$(J_{HH} = 8.7)$
$(J_{FHc} = 5.1,$
$J_{PSCCH} = 2)$ | – 70.2 (CHCl ₃) | | $-N(\mathrm{CH_2CH_3})_2$ | | liquid | CDC13 | 3.88 ($f_{PCH} = 5.5$) | 1.16
(Јнн = 7) | 3.28
(∫нн = 7,
∫русн = 12.5) | – 62.4 (CHCl ₃) | Lit. [5] b.p. 104-106°/10 Torr. Lit. [5] m.p. 56-57°. d at 7.22 ppm (m, 2 H). e at 7.6 ppm (m, 1 H). G C P G Table 3. Physical properties of bis-chloromethyl-phosphinous derivatives $(CICH_2)_2PX$ | X | Yield
in % | b.p. °C | | ¹ H-NMR. in ppn
a | 1 H-NMR. in ppm (coupl. const. in Hz) a | 31 P-chem. shift in ppm $^{(H_3PO_4)}$ as ref.) | |---|---------------|---|--------------------------------|--|---|---| | -CI | 61 | 45-47°/10 Torra) | | 3.93
(nonequivalence of H) | of H) | -71.9 (subst.) | | CH_3 | 28.8 | 44°/5Torr | | 3.72 ($J_{PCH} = 6.3$) 1.19 (J_{PC} | 3) 1.19 $(J_{PCH} = 3.6)$ | | | CH2CH3 | 23 | 85°/2022 Torr | | , | | | | a) Lit. [6]: b.p. 74-77°/16-18 | 8 Torr; [8]: | 5-18 Torr; [8]: b.p. 76°/22 Torr. | | | | | | | • | a Table 4. Physical properties of oxides and sulfides (ClCH $_2$) $_2\mathrm{P}(\mathrm{Y})\mathrm{R}$ | ties of oxides | and sulfides (CICE | ${f I_2}_2{f P}({f Y}){f R}$ | | | R | ¥ | m.p. °C | solvent
¹ H-NMR. | ¹ H-NMR. in ppn
a | 1 H-NMR, in ppm (coupl. const. in Hz) c | $^{31}\mathrm{P-chem.\ shift\ in\ ppm}$ $^{(\mathrm{H}_3\mathrm{PO}_4)}$ as ref.) | | CH ₃ | s | yellow oil | CDC13 | 3.84 $(J_{PCH} = 6)$ | 1.19 ($J_{PCH} = 12.8$) | | | $\underbrace{\operatorname{CH_2CH_3}}_{b}$ | w | 30.531° (from Et ₂ O/hexane) | CDCI3 | 3.8 $(J_{PCH} = 5.8)$ | 0.95–2.45 (m) | – 55.2 (CHCl ₃) | | $\overset{\mathrm{CH}_{2}\mathrm{CH}_{3}}{\overbrace{b}}$ | 0 | 42.5-43°a) | CDCI3 | 3.77 ($f_{PCH} = 6.8$) | 1.28-2.06 | -45.7 (CHCl ₃) | | o o | S | 41–41.5°
(Et ₂ O/hexane) | CDCl ₃ | 4.05 (JPCH = 5.4) | 7.55 8.0 (m) (m) | -44.2 (CHCl ₃) | | | | | | | | | b) Lit. [9] m.p. 42-44°. for PCH₃, two different ClCH₂P groups, PCH₂P and P-Ph groups. The phosphine (ClCH₂)₂PCH₃ could, however, be distilled at 44°/5 Torr without decomposition. Obviously these bis-chloromethyl-phosphines undergo dimerization and/or polymerization reactions similar to those of diphenyl-chloromethyl-phosphine, see [10]. Therefore these phosphines were isolated and identified either as sulfides or as oxides (see Tables 3 and 4). $(ClCH_2)_2RP + S \text{ (or } Br_2/H_2O) \rightarrow (ClCH_2)_2RP + S \text{ (or } = O)$ #### Experimental Part 1) (with Messr. A. Hauser and A. Zoller) - A. (ClCH₂)₂P(O)Cl and Derivatives. 1. Preparation of (ClCH₂)₂P(O)Cl (I): 415 g (91.5%) (I) were prepared by reaction of 315 g of (HOCH₂)₂P(O)OH with 1785 g of SOCl₂ as described previously [2]; using only stoichiometric amounts of SOCl₂ the anhydride Ia, instead of the chloride I, was obtained. - a) $(\text{CICH}_2)_2\text{P(O)O(O)P(CH}_2\text{Cl})_2$ (Ia) is obtained when 472 g (3.75 moles) of anhydrousi $(\text{HOCH}_2)_2\text{P(O)OH}$ is added in *small portions*, over a period of 6 h with stirring to 1335 g (11.25 moles) of SOCl_2 ; if addition is too fast, strong foaming sets in. Continous evolution of HCl and SO_2 is observed; the reaction is endothermic. The mixture is stirred for a further 3 h and then heated in vacuum to 70° to remove volatile products, giving 529.1 g (92%) crude Ia. - 54.1 g crude I a yield on fractionation 44.2 g (82%) pure Ia, b.p. 185°/0.1 Torr, which solidifies on cooling, m.p. 70–72° (Lit. [2] b.p. 205°/2 Torr, m.p. 74°). H¹-NMR. (in CDCl₃/ClCH₂) at 3.72 ppm ($J_{\rm PCH} = 9$ Hz). The rest of crude Ia (475 g) is suspended in 1 l. CCl₄, stirred and treated with 321 g PCl₅ over a period of 1.5 h. An exothermic reaction ensues and a dark colored solution is obtained which is stirred at room temperature for 1.5 h and then heated under reflux for one hour. Fractional distillation yields 480.4 g (85.6%) pure I, b.p. 66–72°/0.1 Torr, $n_D^{20} = 1.5193$ (Lit. [2, 3] b.p. 98–101°/1 Torr, $n_D^{25} = 1.5196$). The ³¹P-chem. shift³) of -51.6 ppm (Lit. [5] -49.3 ppm), and the H¹-NMR. spectrum³) (see table 1) confirm the structure assigned. C_2H_4 Cl₃OP (181.4): eq. wt. found 180.4. - b) Prep. of Ia at 80° with stoichiometric amount of $SOCl_2$: To 133.5 g (1.12 moles) of boiling $SOCl_2$, under reflux 47.2 g (0.374 mole) of $(HOCH_2)_2P(O)OH$ (containing 3.6% $HOCH_2P(O)(OH)_2$) is slowly added. After heating for 5 h at 80°, the mixture yields on distillation 44.2 g (77%) 1a, b.p. 176–182°/0.01 Torr, m.p. 68–73°. - c) Prep. of Ia with excess SOCl₂ at 0 to 10° : 46.2 g (0.367 mole) of (HOCH₂)₂P(O)OH is added slowly to 218 g (1.835 moles) of SOCl₂ over a period of 5 h at 0–20°. After stirring for 3 h at room temperature, distillation yields first excess SOCl₂ and then a forerun (15.3 g) containing (ClCH₂)₂P(O)Cl and finally 35.0 g (62%) Ia, b.p. 176 182° /0.01 Torr, m.p. 68–73°. - d) Cleavage of Ia with SOCl₂ at 80°: 4.4 g (0.0144 mole) Ia and 20 g (6.168 mole) SOCl₂ are heated to 80° (at room temperature very low rate of reaction). SO₂ is continously evolved. After 2 h, distillation gives excess SOCl₂ and a quantitative yield of I b.p. $103-105^{\circ}/6$ Torr. 2. (CICH₂)₂P-O-NO₂ (II). From 3 g (0.0165 mole) I, 2.65 g (0.0165 mole) $$p$$ -NO₂C₆H₄ ONa in 70 ml tetrahydrofuran (THF.) After 1 h heating under reflux, NaCl is filtered off, filtrate is evaporated and residue recrystallized from Et₂O/hexane to give 2.5 g (53.5%) 11, m.p. 66–7°. 3. (CICH₂)₂P—O—b—CI (III). As in 2, I (3 g) gives 1.9 g III, m.p. 52.5–3° (from CHCl₃/ $$a$$ hexane). 31 P-41.6 ppm (in CHCl₃, trace of impurity at -35.2 ppm). Analyses by A. Peisker-Ritter and H. Wolf, Brugg AG, and by A. Manser, ETH Zürich. – ¹H-NMR. data see tables. ²) ref. 85% H₃PO₄. ³⁾ ref. (CH₃)₄Si. 4. $$(CICH_2)_2$$ P-O C=O (IV). As in 2, I (3 g) gives a low yield of IV, m.p. 140-2° $\stackrel{C}{b}$ $\stackrel{C}{c}$ \stackrel (from acctone/hexane). 5. $(\text{CICH}_2)_2^{\parallel} \text{PN}(\text{CH}_3)_2$ (V), 27.2 g (0.15 mole) I with 13.5 g (0.3 mole) (CH₃)₂NH and 400 ml Et₂O as in 2, gives 5.1 g (18.6%) V, m.p. 79.5–80° (from benzene) (Lit. [4] m.p. 80–1°). ³¹P-35.1 ppm (in CHCl₃). 6. $(CICH_2)_2$ PN($CH_2CH_3)_2$ (VI). 27.2 g (0.15 mole) I with 21.9 g (0.3 mole) Et₂NH and 450 ml c b a Et₂O as in 2 gives 17.8 g (54.5%) VI, m.p. 62.9–63.3° (from Et₂O) (Lit. [4] m.p. 64–5°). ³¹P-34.2 ppm (in CHCl₂). ${\rm C_6H_{14}Cl_2NOP~(218.05)} \quad {\rm Calc.~C~33.05~H~6.47~N~6.42\%} \quad {\rm Found~C~32.93~H~6.80~N~6.19\%}$ 7. $[(CH_3CH_2O)_2P_xCH_2]_2P_{\beta}N(CH_2CH_3)_2$ (VII). From 10.9 g (0.05 mole) VI and 33.2 g (0.2 mole) a (EtO) $_3\mathrm{P}$ at 160° [2]; 6.0 g (95%) EtCl were evolved. Distillation gave VII as a colorless oil b.p. 130–4°/0.01 Torr, $n_\mathrm{D}^{20}=1.4696$. The $^1\mathrm{H}\text{-NMR}$, as well as the $^{31}\mathrm{P}\text{-NMR}$, spectra indicate that in part Et $_2\mathrm{N}$ -groups were exchanged by EtO-groups: $^{31}\mathrm{P}\text{-chem}$, shifts -21.4 ppm (P_α) and -29.3 ppm (P_β); in addition there is a peak at -37.5 ppm arising from P_β of [(EtO) $_2\mathrm{P}_\alpha$ (O)CH $_2\mathrm{I}_2\mathrm{P}_\beta$ (O)OEt which is present. $^1\mathrm{H}\text{-NMR}$. (in CDCI $_3$): a at 1.33 ppm (t); a' at 1.14 ppm (t), a+a' 18 H; b at 2.78 ppm (broad, $J_{\mathrm{P}_\alpha\mathrm{CH}}=18.5$, $J_{\mathrm{P}_\beta\mathrm{CH}})=20.3$ Hz, 3.76 H); b' at 3.15 ppm (2 q, $J_{\mathrm{HH}}=7$, $J_{\mathrm{PNCH}}=11$ Hz, 2.44 H), and c at 4.17 ppm (m, 9.64 H). B. (CICH₂)₂PCI and Derivatives. -8. (CICH₂)₂P(S)CI (VIII). A mixture of 181.3 g (1 mole) I and 50 g (0.22 mole) P_2S_5 is heated at 165° for 3 h. Distillation yields 148.3 g (75%) crude VIII which is shaken with ice water to remove I and then redistilled to give 118.5 g (60%) VIII, b.p. 46–8°/0.7 Torr, $n_{10}^{20}=1.5897$, $d_{4}^{20}=1.549$ (Lit. [5] b.p. 104–6°/10 Torr, $n_{10}^{20}=1.5890$, $d_{4}^{20}=1.5895$; [6] b.p. 92.5–3.5°/6 Torr, $n_{10}^{20}=1.5872$, $d_{4}^{20}=1.5483$). ³¹P-chem. shift -81.9 ppm (subst.). ¹H-NMR. (in CDCl₃): shows non-equivalence of the H within the CH₂-groups but not two different CH₂-groups, a centered at 4.12 ppm ($J_{PCH}=4.87$ Hz from ³¹P-NMR.) (see Fig.). C₂H₄Cl₃PS Calc. C 12.17 H 2.04 Cl 53.87 P 15.68 S 16.24% (197.46) Found ,, 12.27 ,, 1.95 ,, 53.47 ,, 15.15 ,, 17.46% 9. $(CICH_2)_2P(S)O-$ (IX). As in 2, 3.94 g (0.02 mole) VIII, 1.88 g (0.02 mole) PhOH, $2.02~\rm g~Et_3N$ and 80 ml THF give 1.3 g (25.5%) 1X, pale yellow crystals, m.p. 54.5–55° (from Et₂O/hexane) (Lit. [5] m.p. 56–57°). 10. $(CICH_2)_2P(S)O$ —NO₂ (X). As in 2, 2 g (0.011 mole) VIII with 1.77 g (0.011 mole) p-NO₂C₆H₄ONa and 100 ml acctone give 1.9 g (57.5%) X, pale yellow crystals, m.p. 76–76.3° (from CHCl₃/hexane). C₈H₈Cl₂NO₃PS Calc. C 32.01 H 2.68 Cl 23.63 N 4.67% (300.11) Found , 31.95 , 2.75 , 23.48 , 4.64% 71. $$(CICH_2)_2P(S)-O$$ —C1 (XI). As in 2, 4 g (0.022 mole) VIII with 3.6 g (0.022 mole) $2.4 - \text{Cl}_2\text{C}_6\text{H}_3\text{OH}$, 2.22 g Et₃N and 100 ml THF give 2.2 g (32.5%) XI, pale yellow crystals, m.p. 51.8–52.2° (from Et₂O/hexane). ${\rm C_8H_7Cl_4OPS~(324.0)} \quad {\rm Calc.~C~29.66~H~2.18~C143.78\%} \quad {\rm Found~C~29.68~H~2.28~C143.64\%}$ 12. (CICH₂)₂P(S)-O C=O (XII). As in 2, 2.0 g (0.011 mole) VIII with 2.18 g (0.011 b) $$c \to c$$ $c \to c$ $c \to c$ mole) of Na salt of β -umbelliferon and 100 ml acetone give 1.7 g (48.1%) XII, m.p. 120–121° (from CHCl_g/hexane). $\mathrm{C_{12}H_{11}Cl_2O_3PS}$ (337.17) Calc. C 42.74 H 3.29 Cl 21.03% Found C 42.27 H 3.24 Cl 21.90% 13. (CICH₂)₂P(S)S—F (XIII). As in 2, 3 g (0.015 mole) VIII, 1.9 g (0.015 mole) $$p$$ -FC₆H₄ OH, 1.5 g (0.015 mole) Et₃N and 70 ml acetone give XIII in white crystals, m.p. 50-50.5°. 14. (CICH₂)₂P(S)N(CH₂CH₃)₂ (XIV). As in 2, 3 g VII1, 2.22 g Et₂NH and 70 ml Et₂O give XIV c b a as a liquid which crystallizes at -20° (Lit. [5] b.p. 95°/10 3 Torr). **C.** (CICH₂)₂PCl and Derivatives. – I5. (CICH₂)₂PCl (XV). From 19.7 g (0.1 mole) VIII, and 34 g (0.11 mole) (PhO)₃P at 170° [7]. Crude XV is continously distilled off at 100–110 Torr; redistillation of this crude XV (12.5 g; 75.7%) gives 10.1 g (61%) XV, colorless liquid, b.p. 45–47°/10 Torr, 68–70°/20 Torr (Lit. [6] b.p. 74–77°/16–18 Torr. [8] b.p. 76°/22 Torr). ³¹P-chem.-shift -71.9 ± 0.3 ppm (neat); ¹H-NMR. (in CDCl₃), 3.93 ppm (shows non equivalence of H within CH₂-groups. 16. (CICH₂)₂PCH₃ (XVI) and (CICH₂)₂CH₃PS (XVII). To 8.59 g (0.072 mole) of CH₃MgBr in b (20 ml Et₂O 6.0 g (0.036 mole) XV in 20 ml Et₂O is added at -20° . The temperature is then kept at -5 to 0° for 1 /₂ h, the mixture hydrolyzed with NH₄Cl-solution at 0° and the ether layer separated. Distillation of the ethereal solution gives 1.5 g (28.8%) XVI, a liquid, b.p. 44°/5 Torr. ¹H-NMR. (in CD₃OD/CDCl₃): a at 1.19 ppm (d, $J_{\rm PCH}=3.6$ Hz, 3 H), b at 3.72 ppm (d, $J_{\rm PCH}=6$ Hz, 4 H). The phosphine XVI is very sensitive towards oxygen and the ¹H-NMR. spectrum shows the presence of small amounts of oxide (CICH₂)₂P(O)CH₃ with peaks for CH₃ at 1.76 ($J_{\rm PCH}=13.3$ Hz) and CICH₂ 3.72 ppm (7 Hz) (Lit. [9] reports CH₃ at 1.74 ppm ($J_{\rm PCH}=13.3$ Hz) and CICH₂ at 3.75 ppm ($J_{\rm PCH}=7$ Hz)). 0.5 g crude XVI in benzene is heated under reflux with sulfur during 5 h and benzene then evaporated. The residue dissolved in ether is filtered off from excess sulfur and Et₂O distilled off from the filtrate. The residue XVII is a yellow oil, spectroscopically pure: 1 H-NMR. (in CDCl₃), a at 1.91 ppm ($f_{PCH} = 12.8$ Hz, 3 H); and b at 3.84 ppm ($f_{PCH} = 6$ Hz, 4 H). 17. (CICH₂)₂PCH₃CH₃ (XVIII), (CICH₂)₂(CH₃CH₂)P=S (X1X), and (CICH₂)₂(CH₃CH₂)P=O (XX).-a) XVIII is prepared as described in 16, but MeMgBr replaced by EtMgBr. Distillation gives 1.5 g (23%) XVIII, b.p. 85°/20–22 Torr; the compound solidifies after some time and then shows a very complex ¹H-NMR. spectrum. Treatment of crude XVIII with sulfur in benzene solution (5 h heating under reflux) gives the sulfide XIX, white crystals, m.p. 30.5–31° (from Et₂O/hexane). b) As an alternative, $10 \, \mathrm{g}$ (0.06 mole) XV, $16 \, \mathrm{g}$ (0.12 mole) EtMgBr₂, and $100 \, \mathrm{ml}$ Et₂O is treated at 0° with bromide dissolved in H₂O, NaHCO₃ added, the mixture filtered, and the ether layer separated. As evaporation of the ethereal solution gives only $0.3 \, \mathrm{g}$ XX, the aqueous layer is evaporated to dryness and the residue twice extracted with 250 ml CHCl₃. Distillation of the combined CHCl₃ extracts gives 8.2 g (77.6%) XX, b.p. $91-92^{\circ}/0.5$ Torr, which solidifies at room temperature, m.p. $42.5-43^{\circ}$ (Lit. [9] b.p. $91-93^{\circ}/0.5$ Torr, m.p. $42-44^{\circ}$). The ³¹P- and ¹H-NMR, spectra agreed with those of an authentic sample [9]. 18. (CICH₂)₂P(S) $$b$$ (XXI). The crude reaction mixture from 6 g (0.036 mole) XV and 15.05 g (0.072 mole) PhMgBr in 50 ml $\rm Et_2O$ was hydrolyzed with NH₄Cl-solution, the $\rm Et_2O$ -phase separated, and ether distilled off. The residue was taken up in benzene, sulfur added, heated under reflux for 5 h, the benzene evaporated, and the product several times recrystallized from $\rm Et_2O/hexane$. Crystalline XXI was obtained m.p. 41–41.5°. C₈H₉Cl₂PS (239.1) Calc. C 40.18 H 3.79% Found C 40.09 H 3.75% #### BIBLIOGRAPHY - [1] L. Maier, Part 52 Phosphorus, in print. - [2] L. Maier, Helv. 52, 827 (1969). - [3] A. W. Frank & I. Gordon, Canad. J. Chemistry 44, 2593 (1966). - [4] B. E. Ivanov, V. G. Trutnev & I. M. Shermergorn, USSR Pat. 187.779 [Chem. Abstr. 67, 11588 g (1967)]; B. E. Ivanov, A. R. Panteleeva, R. R. Shagidullin & I. M. Shermergorn, Zhur. obshch. Khim. 37, 1856 (1967), Engl. transl. p. 1768. - [5] A. R. Panteleeva & I. M. Shermergorn, Izv. Akad. Nauk SSSR, Ser. Khim., 1968, 1644, Engl. transl. p. 1557 [Chem. Abstr. 69, 87112 j (1969)]. - [6] G. K. Genkina & V. A. Gilyarov, Izv. Akad. Nauk SSSR, Ser. Khim., 1969, 185, Engl. transl. p. 181 [Chem. Abstr. 70, 115 265 c (1969)]. - [7] L. C. D. Groenweghe, L. Maier & H. E. Ulmer, Abstracts of Papers, 139th ACS meeting, St. Louis 1961, 17-M; E. Uhing, K. Rattenburg & A. D. F. Toy, J. Amer. chem. Soc. 83, 2299 (1961). - [8] J. L. Ferron, Nature 189, 916 (1961). - [9] L. Maier, Helv. 52, 845 (1969). - [10] B. Bloch & D. Charrier, C. r. hebd. Séances Acad. Sci., Ser. C, 263, 1160 (1966). ## 177. Equilibres conformationnels de glucides au niveau de liaisons σ sp^2 - sp^3 C-C. II¹) ### Dérivés d'hydrazones d'aldéhydo-sucres par J. M. J. Tronchet, Br. Baehler, A. Jotterand²) et M^{uc} F. Perret Institut de Chimie Pharmaceutique de l'Université, 10, Boulevard d'Yvoy, 1205 Genève (25 VI 71) Summary. A series of alkyl- and aryl-hydrazones of different types of aldehydo-sugars with blocked hydroxy groups have been studied, mainly by PMR. spectroscopy. No traces of the azoalkane or ene-hydrazine forms were detected; the hydrazones were found to exist only in the syn ¹⁾ La référence [1] constitue la première communication de cette série. ²⁾ Les composés de configuration arabino ont fait l'objet de la thèse de Doctorat ès Sciences [2] de cet auteur.