INVESTIGATIONS IN THE IMIDAZOLE SERIES

XLVII.* 2-ACYL-AND 2-ACYL-3-ALKYL-SUBSTITUTED IMIDAZO[2,1-b]-

THIAZOLE AND IMIDAZOLINO[2,1-b]THIAZOLE

I. A. Mazur, P. M. Kochergin, and V. G. Tromsa

UDC 547.785.5'789.3

A number of 2-acyl(2-acyl-3-alkyl)imidazo[2,1-b]thiazoles and previously unknown 2-acyl-(2-acyl-3-alkyl)imidazolino[2,1-b]thiazoles were obtained by the reaction of 2-acylmethyl-mercapto derivatives of imidazole and imidazoline with acylating agents.

In developing the research in [2] it was of interest to elucidate whether the reaction of 2-acylmethylmercaptoimidazoles with acetic anhydride is a special case of the formation of 2-acyl-3-methylimidazo-[2,1-b]thiazoles or if it is general in character and can be used for the synthesis of the difficult-to-obtain or previously unknown aldehydes and ketones of the imidazo[2,1-b]thiazole and imidazolino[2,1-b]thiazole series.

We established that 2-acylmethylmercaptoimidazoles [1,3,4], as in the case of acetic anhydride, also form the corresponding N-acyl derivatives (I-IX, Table 1) by reaction with formic acid or propionic anhydride. Compounds I-IX readily split out a water molecule and are converted to 2-acyl- and 2-acyl-3-alkyl-substituted imidazo[2,1-b]thiazoles (X-XXVII, Table 1).

A simpler, one-step method for obtaining aldehydes and ketones of the imidazo[2,1-b]thiazole series is the reaction of 2-acylmethylmercaptoimidazoles with formic acid in the presence of sodium formate and acetic anhydride or with carboxylic acid anhydrides in the presence of sodium salts of the corresponding acids.

R3 NH R2COOH OF
$$(R_2CO)_2O$$

R3 COR2

R4 N S CH₂COR1

R2COO_M + R₂COO_M COR₂

Or $(R_2CO)_2O + R_2COO_{M_2} + (CH_2CO)_2O$

R3 COR2

I-IX

We synthesized a number of previously unknown 2-acyl(2-acyl-3-alkyl)imidazolino[2,1-b]thiazoles (XXX-XXXIII) via a similar scheme from the accessible 2-acylmethylmercaptoimidazolines [5].

The structures of the compounds obtained were confirmed by IR spectra, reactions at the carbonyl group, and the alternative synthesis of 2-acetyl-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (XXI) from 4,5-diphenyl-2-mercaptoimidazole with 3-chloro-2,4-pentanedione [1].

Zaporozhe Medical Institute. S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 389-392, March, 1971. Original article submitted February 9, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*}See [1] for communication XLVI.

TABLE 1. 1-Acyl-2-acylmethylmercaptoimidazoles (I-IX) and 2-Acylimidazo[2,1-b]thiazoles (X-XXVII)

Yield, %		88 88 88 88 88 88 88 88 88 88 88 88 88
	s	0.00
nd, % Calculated, %	z	8.4.4.0.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	н	& QUE TO
	U	
	s	0.80 1.10 1.00 8.00 1.10 1.00 1.00 1.00
	z	81.000000000000000000000000000000000000
Found,	H	www.w.a.a.a.w.w.a.a.w.a.a.w.a.a.w.a.a.w.a.a.w.a.
	O	298.4 248.6 248.6 25.4 26.0 26.
	Empirical formula	C18H18NO4S C18H18NO4S C18H18NO4S C18H18NSOS
	v _{GO} , cm-la	1690, 1747 1676, 1735 1688, 1736 1692, 1739 1729 1695, 1741 1633 1650 1650 1670 1670 1670 1670 1670 1670 1670 167
	Mp, °C	152—154 119—142 119—120 167—169 174—175 173—175 210—212 208—209 112—13 208—209 112—13 208—209 112—13 208—209 112—164 226—227 192—195 167—169 228—229 190—191 175—176 181—183 161—163 210—212
	ž.	CHILL COCCEPT THE THE THE THE THE THE THE THE THE TH
	rg W	P-NO2C6H, P-NO2C
	R2	тат дай дай татататата дай дай дай дай дай дай дай дай дай да
	Ri	CH4 Ch4 Ch4 Ch4 Ch4 Ch4 Ch4 Ch4 Ch4 Ch4 Ch
	Compound	

a The IR spectra of the compounds in mineral oil were obtained with a UR-10 spectrometer, b The Br content was determined and agreed with the calculated value within the limits of the error in the determination. cp-Nitrophenylhydrazone with mp 254-255° (decomp., from ethanol-dioxane). Found %: C 63.9; H 4.4; N 14.8; S 6.4. C₂₅H₁₉N₅O₂S · H₂O. Calculated %: C 63.6; H 4.5; N 14.4; S 6.8. ^dMp 190-191° [1].

EXPERIMENTAL

- 1-Formyl-2-acylmethylmercaptoimidazoles (I-III). A previously prepared and cooled mixture of 10 ml of 85% formic acid in 20 ml of acetic anhydride was added to 0.01 mole of 2-acylmethylmercaptoimidazole, and the reaction mass was allowed to stand for 18 h at 18-20° and poured into water (with cooling). The precipitate was filtered, washed with water, dried in a vacuum desiccator over CaCl₂, and purified by reprecipitation with water from dimethylformamide.
- 1-Propionyl-2-acylmethylmercaptoimidazoles (IV-IX). A solution of 0.01 mole of 2-acylmethylmercaptoimidazole in 10-20 ml of propionic anhydride was heated at 135-140° (bath temperature) for 10 min (to obtain IV), 40 min (for V-VII), and for 1 h (for VIII-IX). The mixture was cooled, and the precipitate was filtered, washed with ether, and crystallized from ethanol (IV), butanol (V-VII), dioxane (VIII), or ethanol—dioxane (IX).
- 2-Acyl(2-acyl-3-alkyl)imidazo[2,1-b]thiazoles (X-XXVII). A. An equivalent quantity of sodium formate dihydrate and 20-30 ml of a mixture prepared from 85% formic acid and acetic anhydride (1:2) were added to 0.01 mole of the 2-acylmethylmercaptoimidazole. The reaction mass was refluxed for 1 h (to obtain XII), for 1.5 h (XV), 2 h (X, XIII-XVI, XVIII, XIX), 3 h (XI), or for 4 h (XVII), cooled, poured into water, and the resulting precipitate was filtered and washed with water.
- B. A mixture of 0.01 mole of 2-acylmethylmercaptoimidazole, an equivalent amount of sodium acetate or propionate, and 15-40 ml of acetic or propionic anhydride was refluxed for 20 min (to obtain XXI, XXII, XXV, and XXVII), for 30 min (XXIV), or for 1 h (XX, XXIII, and XXVI) and cooled. The resulting precipitate was filtered and washed with ether and water; XXII was isolated by elution of the reaction mass with water, while XX, XXIII, and XXIV were isolated after dilution of the reaction mass with water and subsequent neutralization with ammonium hydroxide. The precipitate of XX was removed by filtration, while XXIII and XXIV were extracted with chloroform.
- C. A mixture of 0.01 mole of VI-VIII, an equivalent amount of sodium propionate, and 10-15 ml of propionic anhydride was refluxed for 20 min (to obtain XXIV and XXV) or for 1 h (XVI), cooled, and worked up as described in experiment B. Compounds XV and XVI were similarly obtained from I and II by heating in acetic anhydride in the presence of sodium formate for 3 h at 95-100°. For analysis, the compounds were purified by crystallization from 60% ethanol (X and XVI), butanol (XI, XIV, XVIII, and XXV), ethanol (XII, XVII, XIX, XX, and XXIV), ethanol—dioxane (XIII and XXVI), propanol (XV), ethanol—butanol (XXI, XXII, XXVII), or methanol (XXIII).
- 1-Acetyl-2-phenacylmercaptoimidazoline (XXVIII). 2-Phenacylmercaptoimidazoline (2 g) was added with cooling to 30 ml of acetic anhydride, the solution was allowed to stand for 4 h at 15-20°, and 50 ml of ether was added. The precipitate was filtered and washed with ether to give 1.8 g (77%) of a product with mp 142-143° (decomp., from ethanol). IR spectrum: 1679 cm⁻¹ (CO). Found %: C 59.6; H 5.3; N 10.7; S 12.1. $C_{13}H_{14}N_{2}O_{2}S$. Calculated %: C 59.5; H 5.4; N 10.7; S 12.2.
- 1-Acetyl-2-(p-bromophenacyl)mercaptoimidazoline (XXIX). This was similarly obtained in 88% yield and had mp 155-156° (decomp., from butanol). IR spectrum: 1680 cm⁻¹ (CO). Found %: C 45.7; H 3.6; N 8.1; S 9.5. $C_{13}H_{13}BrN_2O_2S$. Calculated %: C 45.7; H 3.8; N 8.2; S 9.4.
- 2-Benzoylimidazolino[2,1-b]thiazole (XXX). A mixture of 10 ml of 85% formic acid and 20 ml of acetic anhydride was added to 2 g of 2-phenacylmercaptoimidazoline and 2 g of sodium formate, and the resulting solution was heated for 2 h at 55-60°, cooled, and poured into water. The mixture was neutralized with ammonium hydroxide, extracted with chloroform, and base XXX was converted to 2.1 g (86%) of the hydrochloride with mp 251-253° (decomp., by precipitation with ether from absolute ethanol) by the action of alcoholic HCl. IR spectrum: 1630 cm⁻¹ (CO). Found %: C 53.9; H 4.3; Cl 13.3; N 10.6; S 12.3. $C_{12}H_{10}N_{2}OS \cdot HCl$. Calculated %: C 54.0; H 4.2; Cl 13.3; N 10.5; S 12.0.
- 2-(p-Bromobenzoyl)imidazolino[2,1-b]thiazole (XXXI). This was obtained in the same way as XXX but with the difference that the reaction mass was heated at 95-100°. The hydrobromide was obtained in 70% yield and had mp 286-287° (decomp., by precipitation from ethanol with ether). IR spectrum: 1637 cm⁻¹ (CO). Found %: C 36.6; H 2.8; Br 41.0; N 7.0; S 8.0. $C_{12}H_9N_2OS \cdot HBr$. Calculated %: C 36.9; H 2.6; Br 41.0; N 7.2; S 8.2.

2-(p-Nitrobenzoyl)imidazolino[2,1-b]thiazole (XXXII). This was obtained in the same way as XXX (with heating at 95-100° for 2 h). The hydrochloride was obtained in 68% yield and had mp 236-238° (decomp., by precipitation with ether from absolute ethanol). Found %: C 46.5; H 3.5; Cl 11.8; N 13.7; S 10.6. $C_{12}H_9N_3O_3S$ · HCl. Calculated %: C 46.2; H 3.2; Cl 11.4; N 13.5; S 10.3.

2-(p-Bromobenzoyl)-3-methylimidazolino[2,1-b]thiazole (XXXIII). A mixture of 2.2 g of XXIX, 2.2 g of sodium acetate, and 15 ml of acetic anhydride was heated for 45 min at 95-100° and worked up as described for XXX to give 86% of hydrobromide with mp 269-270° (decomp., by precipitation with ether from methanol). IR spectrum: 1725 cm⁻¹ (CO). Found %: C 38.6; H 3.0; N 7.1; S 8.0. $C_{13}H_{11}BrN_2OS \cdot HBr$. Calculated %: C 38.8; H 3.0; N 6.9; S 7.9.

LITERATURE CITED

- 1. I. A. Mazur and P. M. Kochergin, Khim. Geterotsikl. Soedin., 512 (1970).
- 2. P. M. Kochergin, Zh. Obshch. Khim., 26, 2916 (1956).
- 3. I. A. Mazur and P. M. Kochergin, Khim. Geterotsikl. Soedin., 508 (1970).
- 4. P. M. Kochergin and M. N. Shchukina, Zh. Obshch. Khim., 26, 458 (1956).
- 5. M. Fefer and L. C. King, J. Org. Chem., 26, 828 (1961).