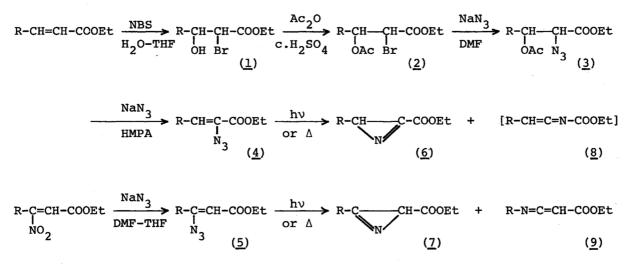
NOVEL SYNTHESIS OF THE TAUTOMERIC ISOMER OF THE AZIRINOMYCIN ETHYL ESTER AND ITS ANALOGUES

Chung-gi SHIN, ^{*} Yasuchika YONEZAWA, and Juji YOSHIMURA^{**} Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 ^{**}Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Meguro-ku, Tokyo 152


The new and facile syntheses of ethyl 2-azido-2-alkenoate $(\underline{4})$ and ethyl 3-azido-2-alkenoate $(\underline{5})$, and the subsequent photolysis or pyrolysis of $\underline{4}$ and $\underline{5}$ to 2-alkyl-3-ethoxycarbonyl-2H-azirines and 3-alkyl-2-ethoxycarbonyl-2H-azirines, respectively, were accomplished.

The photochemical transformation of ethyl 3-azido-2-butenoate (5a) to azirinomycin ethyl ester¹⁾ (3-methyl-2-ethoxycarbonyl-2H-azirine (7a)) suggested that ethyl 2-azido-2-alkenoate (4) would be an useful starting material for the tautomeric isomers (2-alkyl-3-ethoxycarbonyl-2H-azirines (6)) of azirinomycin.²⁾

In the previous communication,³⁾ we have reported that ethyl 2- as well as 3-nitro-2-alkenoate reacted with sodium azide to give a mixture of $\underline{4}$, ethyl 3-azido-2-alkenoate ($\underline{5}$), and 4-ethoxycarbonyl-1,2,3-triazole derivative as the main product. At present, however, no available method of synthesizing $\underline{4}$ (R=alkyl group) has ever been reported, except for ethyl 2-azido-3-arylacrylate derived from the reaction of ethyl azidoacetate with arylaldehyde⁴⁾ and methyl 2-azido-acrylate from methyl 2-azido-3-iodopropionate by the elimination of hydrogen iodide.⁵⁾

Because of the pharmacological and the structural interests in the relation between <u>6</u> and 3-alkyl-2-ethoxycarbonyl-2H-azirines (<u>7</u>), the new and facile syntheses of <u>4</u> and <u>5</u>, and the subsequent photolysis or pyrolysis of <u>4</u> and <u>5</u> to <u>6</u> and <u>7</u>, respectively, were pursued and the general synthetic methods of <u>4-7</u> were accomplished in this communication. The two reaction pathways are shown in the Scheme 1. The yields of each step are reasonable and the reaction conditions are remarkably mild.

Ethyl 2-bromo-3-hydroxyalkanoate (<u>1</u>) was obtained by the reaction of ethyl 2-alkenoate (0.5 mol) with N-bromosuccinimide (NBS) (0.55 mol) in water-THF (300 ml, 1 : 1 V/V) at room temperature, according to the known method.⁶) Acetylation of <u>1</u> (0.1 mol) with acetic anhydride (0.15 mol) in the presence of one drop of concentrated sulfuric acid at room temperature gave ethyl 3-acetoxy-2-bromoalkano-ate (<u>2</u>) as a colorless syrup. Then azidation of <u>2</u> (0.02 mol) with sodium azide (0.04 mol) in DMF (50 ml) at 5^oC gave ethyl 3-acetoxy-2-azidoalkanoate (<u>3</u>) as a

a; $R=CH_3$, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$

Scheme 1

R	<u>1</u>	2	3	4	5	<u>6</u>	7
СНЗ	58	83	92	90	88	61 (51) ^{a)}	57 (53) ^{b)}
с ₂ н ₅	51	85	91	81	69	65 (60) ^{a)}	45 (37) ^{b)}
n-C ₃ H7	48	86	95	74	38	60 (59) ^{a)}	45 (40) ^{b)}
i-C ₃ H ₇	50	84	92	75	36	60 (68) ^{a)}	40 (38) ^{b)}
C ₆ H ₅	45	90	89	95 ^{c)}	35		_

Table 1. Yields of 1-6 and 7 (%)

a) Pyrolysis of <u>4</u> to <u>6</u>. b) Pyrolysis of <u>5</u> to <u>7</u>. c) Reference <u>4</u> (yield 43%).

colorless syrup, which was subsequently treated with 2 equimolar sodium azide in hexamethyl phosphoramide (HMPA) at room temperature to give the expected $\underline{4}$ as a pale yellow syrup, after elimination of acetoxy group.

On the other hand, it was found that the reaction of ethyl 3-nitro-2-alkenoate (0.1 mol) with sodium azide (0.15 mol) at room temperature⁷⁾ in DMF-THF (120 ml, 5 : 1 V/V), instead of DMF,³⁾ underwent selectively to give only <u>5</u> in <u>ca</u>. 50% yield. In the previous experiment,³⁾ a mixture of <u>4</u> and <u>5</u> obtained could not be separated. Finally, a solution of <u>4</u> (0.02 mol) in dry benzene (70 ml) was irradiated in a stream of nitrogen by means of the external 450 W high-pressure

Compound	Bp ^O C/mmHg	_	ectrum, C=N	cm ⁻¹ , in COOEt	KBr C=C	NMR spe β-H	ctrum, (Hz)	δ, in CDCl
	[Mp ^o C]	^N 3 ^{C=N} [C=C=N] ^{a)}		[COOEt] ^{a)}		p-n	(112)	[α-H] ^{a)}
<u>4a</u>	syrup	2110		1720	1640	6.18q	(7.0)	
<u>4b</u>	syrup	2110		1720	1635	6.15t	(7.2)	
<u>4c</u>	syrup	2110		1720	1635	6.16t	(7.6)	
<u>4a</u>	syrup	2110		1720	1630	5.96d	(9.4)	
<u>4e</u>	[42-43] ^{b)}	2110		1720	1623	6.96s		
<u>6a</u>	22-25/0.3		1755	1715	1715	2.47q	(5.9)	
<u>6b</u>	31-32/0.5		1755	1715		2.44t	(5.6)	
<u>6c</u>	45-46/0.2		1755	1715		2.41t	(4.5)	
<u>6d</u>	30-31/0.5		1755	1715		2.36d	(4.2)	
<u>7a</u> + <u>9a</u>	34-35/0.5 ^{c)}	[2050]	1795	1730				2.42s
<u>7b</u> + <u>9b</u>	38-40/0.5 ^{d)}	[2050]	1795	[1700] 1730				[4.11s] 2.45s
<u>7c</u> + <u>9c</u>	50-53/0.2 ^{e)}	[2050]	1790	[1700] 1730				[4.14s] 2.44s
<u>7d</u> + <u>9d</u>	45-47/0.5 ^{f)}	[2050] [2050]	1790	[1710] 1731 [1706]				[4.12s] 2.48s [4.15s]

Table 2. Physical constants and spectral data of 4, 6, 7 and 9

a) Data in brackets are that of ketenimine $(\underline{9})$, except the mp of $\underline{4e}$. b) Reference 4. c) Composed of $\underline{7a}$ and $\underline{9a}$ in ratio 5 : 1.^{g)} d) Composed of $\underline{7b}$ and $\underline{9b}$ in ratio 3 : 5.^{g)} e) Composed of $\underline{7c}$ and $\underline{9c}$ in ratio 3 : 4.^{g)} f) Composed of $\underline{7d}$ and $\underline{9d}$ in ratio 3 : 4.^{g)} g) Evaluated from the intensity of ring proton in $\underline{7}$ and vinyl proton in $\underline{9}$.

mercury lamp (above 300 nm) at room temperature for about 3 hr until the azido band at 2110 cm⁻¹ had disappeared to give <u>6</u> as a colorless oil, without accompanying with the expected N-ethoxycarbonyl-l-alkene-l-imine (<u>8</u>). However, similar treatment of <u>5</u> in benzene gave a mixture of colorless oily <u>7</u> and ethyl 3-alkyliminoacrylate (<u>9</u>).²⁾

Moreover, according to the method reported,⁸⁾ pyrolysis of <u>5</u> (0.02 mol) in refluxing heptane (50 ml) for 2 hr gave only <u>6</u>, while the same reaction of <u>4</u> gave again a mixture of <u>7</u> and <u>9</u>, an almost same ratio as in the case of photolysis (Table 1). Attempt to isomerize to <u>6</u> or <u>7</u> conversely by alkali was unsuccessful.

The structures of all the new compounds were characterized spectroscopically and gave satisfactory results in elementary analysis. It is noteworthy that <u>6</u> and <u>7</u> are distinguishable by the $\nu_{C=N}$ in IR spectra and the presence and absence of couplings in the ring proton signals in NMR spectra.

References:

- 1) G. R. Harvey and K. W. Ratts, J. Org. Chem., <u>31</u>, 3907 (1966).
- a) E. O. Stapley, D. Hendlin, M. Jackson, and A. K. Miller, <u>J. Antibiotics</u>,
 <u>24</u>, 42 (1971). b) T. W. Miller, E. W. Tristram, and F. J. Wolf, <u>ibid</u>., <u>24</u>,
 48 (1971).
- 3) C. Shin, Y. Yonezawa, and J. Yoshimura, Tetrahedron Lett., <u>1974</u>, 7.
- 4) H. Hemetsberger, D. Knittel, and H. Weidmann, Monat. Chem., <u>100</u>, 1599 (1969).
- 5) A. Hassner and F. W. Fowler, J. Org. Chem., <u>33</u>, 2686 (1968).
- 6) C. O. Guss and R. Rosenthal, J. Amer. Chem. Soc., <u>77</u>, 2549 (1955).
- 7) C. Shin, Y. Yonezawa, H. Narukawa, K. Nanjo, and J. Yoshimura, <u>Bull. Chem.</u> Soc. Jpn., <u>45</u>, 3595 (1972).
- 8) H. Hemetsberger, D. Knittel, and H. Weidmann, Monat. Chem., 101, 161 (1970).

(Received August 25, 1976)

1066