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The synthesis of the C22-C37 segment of prorocentin, isolated from the dinoflagellate Prorocentrum lima,
was achieved. Because the relative stereochemical relationship between C26 and other stereocenters
(C28/C31/C32 established as R*/R*/R*) in the C22-C37 region of natural prorocentin has not yet been
determined, both epimers at C26 of the C22-C37 segment were selectively constructed. The synthesis
was based on a 5-exo epoxide ring opening reaction to form an oxolane (E-ring), Brown asymmetric
methallylation to install the C26-stereocenter, acryloylation of the resulting alcohol, and ring-closing ole-
fin metathesis to establish the Z-olefin at C23/C24.

© 2011 Elsevier Ltd. All rights reserved.

Prorocentin (1, Fig. 1), isolated as a cytotoxic agent from the cul-
tured dinoflagellate Prorocentrum lima clone PL021117001 by Lu,'
is a novel polyketide polyether possessing an all-E triene, an epox-
ide (A-ring), a pyran-fused spirocyclic acetal (BCD-ring), an
oxolane (E-ring), and 13 asymmetric centers. The full planar struc-
ture and the relative stereochemistry in the C1-C26 and C27-C35
regions of 1 have been elucidated by extensive NMR analysis,
although the relative stereochemical relationship between the (
two regions, as well as the full absolute configuration, remains
undetermined. Because the unique structure and bioactivity of 1
attracted our attention, we commenced a project toward the total
synthesis and the determination of the absolute configuration of 1.

Prorocentin (1)

Lu's proposed relative stereochemistry
for the C1-C27 and the C27-C35 regions is shown.

Here, the stereoselective synthesis of C26-epimeric lactones 2 and
3 (Fig. 1), corresponding to the C22-C37 segment of 1, is described
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as an initial part of the project. 2

For the future construction of the BCD-ring of 1, shown in
Scheme 1, lactone 2/3 was designed as a versatile synthetic inter- Figure 1.
mediate: it would function as an electrophile for the reaction with
B-ring nucleophile I (Route A) or as a precursor for nucleophile Il or
IV, which would be connected with B-ring electrophile II (Route B). R o, OR2 Me
As described above, the relative stereochemical relationship be- Route A ['g ri
tween C26 and other stereocenters (C28/C31/C32 established as + NG A To 21 4+ 022 oY
R*/R*|R*) in the C22-C37 region of naturally occurring 1 has not » I O‘M 2 /3
yet been determined. Therefore, the preparation of both C26-epi- AH Route B Electrophrle

meric lactones 2 and 3 was required for the synthesis of the possible
stereoisomers of 1. The spectral and optical data of the stereoiso-
mers would then be compared with those of the natural compound
to determine the absolute stereochemistry of prorocentin.

The synthesis of 2 and 3 was planned as shown in Scheme 2.
The following five key reactions were scheduled in the plan: (i)
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(ii) Wittig olefination to construct the isopropylidene group at C33;
(iii) the methallylation of aldehyde 8 to install the C26-stereocen-
ter; (iv) the acryloylation of alcohol 6 or 7; and (v) the ring-closing
olefin metathesis (RCM)? to establish the Z-olefin at C23/C24. The
selective preparation of either 6 or 7 would require an asymmetric
methallylation reaction. To generate the antipodal C26-stereocen-
ter, the acryloylation of the preceding major alcohol (6 or 7) by the
Mitsunobu reaction® was undertaken.

The synthesis of E-ring 9 began from the known chiral com-
pound 11* (Scheme 3). lodide 11 was reacted with an acetylide,
prepared from alkyne 12 with Buli, to produce alkyne 13. The pri-
mary TBS group of 13 was selectively removed with TBAF at low
temperature (—35--25°C) to give alcohol 14 (66% from 11),
which was partially hydrogenated to afford Z-allylic alcohol 15
(100%). The Katsuki-Sharpless asymmetric epoxidation of 15 using
(—)-diethyl tartrate produced 16 (97%) exclusively.> After the TBS
removal from 16, treatment of the resulting dihydroxy epoxide
10 with CSA-promoted 5-exo cyclization to furnish E-ring 9 in
91% yield from 16.

The installation of the isopropylidene group at C33 is illustrated
in Scheme 4. Diol 9 was first converted to alcohol 19 (84% overall)
by protecting group manipulation [(i) selective pivaloylation of the
primary alcohol of 9, (ii) TBS-protection of the secondary alcohol of
17, and (iii) removal of the pivaloyl group of 18]. Swern oxidation®
of 19 followed by Wittig reaction with isopropylidene triphenyl-
phosphorane installed the required isopropylidene group to pro-
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duce 217 (84% from 19). The trans-disubstitution of the E-ring was
confirmed at this stage from the presence of an NOE interaction be-
tween H28 and H32. The PMB group of 21 was removed with DDQ
to give alcohol 22 (100%).2

The construction of the C26-stereocenter was performed after
Dess—Martin oxidation of 22 to give 8 (94%) (Scheme 5).° Alde-
hyde 8 was initially reacted with methallyl magnesium chloride
to produce 26S-alcohol 6'° (57%) and its diastereomer 7 (40%)
with modest selectivity (6:7 =1.4:1) [condition (A)]. Conversion
of 7 to 6 was examined, and a process including Dess—-Martin
oxidation and reduction with Li(s-Bu);BH was found to furnish
6 with relatively high selectivity (6:7 =5:1) in good yield (73%
over two steps). In the methallylation reaction, Brown’s
asymmetric procedure was also tested [condition (B)]."! The reac-
tion of 8 with a methallyl borane, prepared from (—)-B-chloro-
diisopinocampheylborane with methallyl magnesium chloride,
proceeded smoothly in THF at —78 °C to afford 6 predominantly
(6:7 =14:1) in 89% yield. Thus, Brown asymmetric methallylation
was employed as an efficient method for the installation of the
C26-stereocenter of 6.

Finally, lactones 2 and 3 were synthesized as shown in Scheme
6. Treatment of alcohol 6 with acryloyl chloride produced ester 4
(92%). Alternatively, the alcohol was also reacted with acrylic acid
under Mitsunobu conditions to give ester 5 (69%) with complete
inversion of stereochemistry, though the reaction required excess
amounts of reagents because of the low reactivity of 6. Ester 5
was also obtained by esterification of 7 with acryloyl chloride
(89%). The cyclization of esters 4 and 5 was catalyzed by the second
generation Grubbs catalyst (24)'? to smoothly furnish 2 (84%) and
3 (92%),'3 respectively, thereby completing the synthesis of the
C22-C37 segments required for determination of the absolute ste-
reochemistry of 1.

In conclusion, two C26-epimeric lactones 2 and 3 corresponding
to the C22-C37 region of prorocentin (1) were stereoselectively
synthesized for the determination of the absolute stereochemistry
of 1 by total synthesis. The synthesis was based on (i) the 5-exo
cyclization of dihydroxy epoxide 10 to form E-ring 9, (ii) Wittig
olefination to construct the isopropylidene group at C33, (iii)
Brown asymmetric methallylation of aldehyde 8 to install the
C26-stereocenter, (iv) acryloylation of alcohol 6 by a condensation
or a Mitsunobu reaction, and (v) RCM of 4 and 5 to establish the Z-
olefin at C23/C24. Further studies toward the total synthesis and
the determination of the absolute configuration of 1 are in progress
in this laboratory.
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