Structures of Three New Acylated Flavonol Glycosides from Astragalus complanatus R. Br. 1)

Baoliang Cui, Motoyuki Nakamura, Junei Kinjo, and Toshihiro Nohara*

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan. Received November 21, 1991

Three new acylated flavonol glycosides (1—3) were isolated from Astragali Semen, seeds of Astragalus complanatus R. Br. (Leguminosae). The structures of 1, 2 and 3 were elucidated as $3-O-\beta$ -D-glucopyranosyl-4'-O-(3'''-O-dihydrophaseoyl- β -D-glucopyranosyl) rhamnocitrin, 3-O-[5'''-O- β -D-glucopyranosyl] rhamnocitrin and 3-O-[5'''-O-feruloyl- β -D-apiofuranosyl(1''' \rightarrow 2'')- β -D-glucopyranosyl] rhamnocitrin, respectively.

Keywords Astragali Semen; *Astragalus complanatus*; Leguminosae; dihydrophaseic acid; *p*-coumaric acid; ferulic acid; rhamnocitrin; acylated flavonol glycoside

In previous papers we reported the isolation of flavonoids, ²⁾ six triterpene glycosides³⁾ and a novel acylated flavonoid glycoside called complanatin⁴⁾ from Astragali Semen, seeds of *Astragalus complanatus* R. Br. (Leguminosae). Our continuing study on this crude drug has revealed the occurrence of three other new flavonol glycosides (1—3) acylated with dihydrophaseic acid, ⁵⁾ p-coumaric acid and ferulic acid, respectively. We describe here the isolation and characterization of these three new constituents.

The methanol extract of Astragali Semen (4.5 kg) was partitioned between *n*-hexane and 80% MeOH, and then the MeOH extract was further shaken with 1-BuOH and water. Removal of the solvent of the organic layer gave a residue which was subjected to normal and reversed phase column chromatographies to yield three acylated flavonol glycosides 1 (31 mg), 2 (64 mg) and 3 (52 mg).

Compound 1, a pale yellow powder, $[\alpha]_D^{25}$ -33.8° (MeOH), showed a peak due to $[M+H]^+$ at m/z 889 in the positive fast atom bombardment mass spectrum (FAB-MS), and absorptions at $\lambda_{\rm max}^{\rm MeOH}$ (nm) 267 (log ε , 4.59) and 345 (log ε , 4.42) in the ultraviolet (UV) spectrum. The infrared (IR) spectrum exhibited absorption bands due to an α,β -unsaturated carboxylic ester (1660 cm⁻¹) and an aromatic ring (1602 cm⁻¹) together with hydroxyl groups (3432 cm⁻¹). The proton nuclear magnetic resonance (¹H-NMR) spectrum (in dimethyl sulfoxide (DMSO)- d_6) of 1 displayed signals due to a 3,5,7,4'-tetrahydroxyflavonol derivative at δ 12.56 (1H, s, 5-OH), 8.17 (2H, d, J = 8.8 Hz, 2',6'-H), 7.20 (2H, d, J=8.8 Hz, 3',5'-H), 6.77 (1H, d, J = 2.2 Hz, 8-H), 6.40 (1H, d, J = 2.2 Hz, 6-H). In addition, one methyl group at δ 3.87 (3H, s) was shown to connect to C-7-OH by observation of the nuclear Overhauser effect (NOE) between the methoxy group and 6-H, 8-H. Therefore, the flavonol part in 1 was characterized as rhamnocitrin. Moreover, the carbon-13 nuclear magnetic resonance (13C-NMR) spectrum of 1 as listed in Table I revealed that each mole of β -D-glucosyl moiety connected to both C-3-OH and C-4'-OH of rhamnocitrin by comparing chemical shifts with those of rhamnocitrin 3-O-glycoside^{2,6)} [C-3, δ 134.0 (+0.7); C-1', δ 123.8 (+3.1); C-3', 5', δ 115.9 (+0.8); C-4', δ 159.1 (-1.0)]. The remaining ¹H-NMR signals were assignable to dihydrophaseic acid⁵⁾ as follows: δ 0.83 (3H, s, 1-Me), 1.02 (3H, s, 5-Me), 1.55 (1H, dd, J = 13.2, 10.3 Hz, 2-H_a), 1.63 (1H, dd, J = 13.2, 10.3 Hz, $4-H_a$), 1.72 (1H, dd, J=13.2, 6.6 Hz, 2- H_b), 1.88 (1H, dd, J = 13.2, 6.6 Hz, 4-H_b), 2.08 (3H, s, 3'-Me), 3.56 (1H, d, $J=7.3 \text{ Hz}, 7-H_a$), 3.75 (1H, d, $J=7.3 \text{ Hz}, 7-H_b$), 3.92 (1H, m, 3-H), 5.82 (1H, s, 4'-H), 6.50 (1H, d, J = 16.1 Hz, 2'-H), 7.97 (1H, d, J=16.1 Hz, 1'-H), which corresponded to a NaBH₄-reductive product of phaseic acid. In addition, the ¹³C-NMR spectrum (Table I) also suggested the occurrence of dihydrophaseic acid moiety. On the other hand, enzymatic hydrolysis of 1 afforded a deglucosyl product 1a which showed a peak at m/z 727 due to $[M+H]^+$ in the positive FAB-MS spectrum. The ¹³C-NMR signals (Table I) of 1a indicated that the C-3-OH was free and that the acylated glucosyl moiety was linked to C-4'-OH, and acylation position was at the C-3"'-OH of 4'-O-glucosyl moietyl by the acylation shifts^{4,7)} [C-2", δ 71.3 (-1.9); C-3", δ 76.9 (+0.5); C-4", δ 67.6 (-2.0) in glucosyl moiety]; this was also confirmed by the ¹H-NMR (in pyridine- d_5) observation of signals at δ 4.46 (1H, dd, J=8.1, 9.2 Hz, glc 2-H), 6.07 (1H, dd, J=9.2, 9.5 Hz, glc 3-H), 4.55 (1H, dd, J=9.2, 9.5 Hz, glc 4-H) and ${}^{1}H-{}^{1}H$ correlation spectroscopy (COSY). The full structure of 1 was thus characterized as $3-O-\beta$ -D-glucopyranosyl-4'-O-(3'''-O-dihydrophaseoyl- β -D-glucopyranosyl) rhamnocitrin.

Compound 2, a pale yellow powder, $[\alpha]_D^{25}$ -148.4° (MeOH), showed peaks due to $[M + Na]^+$ at m/z 763 and [aglycone+H]⁺ at m/z 301 in the positive FAB-MS spectrum, UV absorptions at $\lambda_{\text{max}}^{\text{MeOH}}$ (nm) 267 (log ε 4.58), 317 (log ε 4.12) and IR absorptions (cm⁻¹) at 3444 (OH), 1660 (conjugated carbonyl) and 1606 (aromatic ring). The ¹H- and ¹³C-NMR spectrum (in DMSO-d₆) (Table I) suggested that 2 was a rhamnocitrin 3-O-glycoside, which was supported by the NOE experiment between 7-OMe and 6, 8-H. Meanwhile, the ${}^{1}\text{H-NMR}$ (in DMSO- d_{6}) signals due to aromatic and olefinic protons at δ 9.62 (1H, s), 7.31 (2H, d, J=8.8 Hz), 7.19 (1H, d, J=15.8 Hz), 6.76 (2H, d, J=15.8 Hz)J = 8.8 Hz), 6.06 (1H, d, J = 16.1 Hz) could be assigned to a p-coumaroyl residue. Therefore, 2 was estimated as a rhamnocitrin 3-O-glycoside acylated with p-coumaric acid, which was also apparent from the evidence of the ¹³C-NMR spectrum.⁸⁾ Compound 2, on saponification, provided a product 2a, a pale yellow solid, $[\alpha]_D^{25} - 39.7^{\circ}$ (MeOH). The peak at m/z 595 resulting from $[M+H]^+$ in the positive FAB-MS spectrum and the ¹H-NMR signals (in DMSO- d_6) at δ 12.67 (1H, s, 5-OH), 10.26 (1H, s, 4'-OH), 8.16 (2H, d, J=8.8 Hz, 2', 6'-H), 6.93 (2H, d, J = 8.8 Hz, 3', 5'-H), 6.67 (1H, d, <math>J = 2.2 Hz, 8-H), 6.33(1H, d, J = 2.2 Hz, 6-H), 5.72 (1H, d, J = 7.3 Hz, glc 1''-H),5.45 (1H, s, api 1"'-H) and 3.84 (3H, s, 7-OMe) suggested that 2a was a rhamnocitrin 3-O-glycoside whose sugar part was assignable to β -D-apiofuranosyl(1 \rightarrow 2)- β -D-gluco1944 Vol. 40, No. 7

TABLE I. 13 C-NMR Spectral Data for 1, 1a, 2, 2a and 3 (in DMSO- d_6)

	1	1a		2	2a	3
Flavonol moiety			Flavonol moiety			
C-2	156.4	146.4	C-2	155.9	156.1	155.9
C-3	134.0	136.6	C-3	133.1	133.4	133.1
C-4	177.7	176.2	C-4	177.4	177.7	177.4
C-5	161.0	160.4	C-5	161.0	161.1	160.1
C-6	98.0	97.5	C-6	97.8	97.9	97.8
C-7	165.3	165.1	C-7	164.9	165.2	164.9
C-8	92.4	92.1	C-8	92.0	92.2	91.9
C-9	155.9	156.2	C-9	156.1	156.3	156.1
C-10	105.2	104.1	C-10	105.1	105.1	105.1
C-1'	123.8	124.5	C-1'	120.9	121.1	120.9
C-2',6'	130.7	129.3	C-2',6'	130.9	131.1	130.8
C-3',5'	115.9	116.2	C-3',5'	115.2	115.3	115.2
C-4'	159.1	158.3	C-4'	160.1	160.1	160.1
7-OMe	56.2	56.0		56.0	56.1	55.9ª)
3- <i>O</i> -glc	30.2	50.0	glc	50.0	50.1	55.7
C-1"	100.8		C-1"	98.4	98.6	98.4
C-2"	74.2		C-2"	77.1 ^{a)}	77.4^{a}	77.1
C-3"	76.4^{a}		C-3"	76.4	76.4	76.4
C-4"	69.9		C-4"	70.3	70.3	70.3
C-5"	77.6		C-5"	77.7ª)	77.5 ^{a)}	77.7 ^{b)}
C-6"	60.9		C-6"	60.8	60.9	60.8
4'- <i>O</i> -glc	00.7		api	00.0	00.7	00.0
C-1'''	99.6	99.6	C-1"	107.8	109.0	107.7
C-2""	71.3	71.3	C-2"	75.9	77.3 ^{a)}	75.8
C-3'''	76.9^{a}	76.9 ^{a)}	C-3'''	77.6 ^a)	79.5	77.6 ^{b)}
C-4'''	67.6	67.6	C-4"	73.7	74.1	73.7
C-5'''	76.7 ^{a)}	76.8 ^{a)}	C-5"	68.0	64.4	68.0
C-6'''	60.3	60.3		00.0	01.1	00.0
Terpene moiety			Aromatic moiety			
C-1	48.1	48.0	C-1	125.1		125.5
C-2	43.9	43.9	C-2	130.2		113.9
C-2 C-3	63.9	63.9	C-3	115.7		149.3
C-4	45.5	45.5	C-4	159.8		147.9
C-5	81.5	81.5	C-5	115.7		115.4
C-3 C-7	75.4	75.3	C-6	130.2		123.0
C-7 C-8	85.8	85.7	C-7	113.6		110.8
C-8 C-1'	135.7	135.6	C-8	144.4		144.6
C-1 C-2'	117.9	117.4	C-9	166.3		166.4
C-2 C-3'	150.4	150.4	3-OMe	100.5		55.6 ^{a)}
C-3 C-4'	130.4	130.4	3-OME			33.0
C-4 C-5'	164.6	164.6	:			
	164.6	164.6				
1-Me						
5-Me	19.6	19.5 20.8				
3'-Me	20.8	∠∪.8				

Assignments with superscripts a) and b) in each vertical column may be interchanged.

pyranoside by the ¹³C-NMR spectrum⁶⁾ (Table I). Furthermore, the location of the acyl group in **2** was determined at the C-5-OH of apiosyl residue in term of the acylation shifts [C-3, δ 77.6 (-1.9); C-5, δ 68.0 (+3.6)]. On the basis of these data, the full structure of **2** was elucidated as 3-O-[5"-O-p-coumaroyl- β -D-apiofuranosyl-(1"" \rightarrow 2")- β -D-glucopyranosyl] rhamnocitrin.

Compound 3, a pale yellow powder, $[\alpha]_{\rm max}^{25}$ -151.1° (MeOH), $\lambda_{\rm max}^{\rm MeOH}$ (nm) 268 (log ε 4.46), 330 (log ε 4.52), showed peaks at m/z 793 due to $[M+Na]^+$ and at 301 due to $[{\rm aglycone}+H]^+$ in the positive FAB-MS spectrum. The ¹H-NMR signals (in DMSO- d_6) due to the flavonol glycosidic residue at δ 12.53 (1H, s, 5-OH), 10.31 (1H, s, 4'-OH), 8.04 (2H, d, $J=8.8\,{\rm Hz}$, 2', 6'-H), 6.89 (2H, d, $J=8.8\,{\rm Hz}$, 3',5'-H), 6.41 (1H, d, $J=2.2\,{\rm Hz}$, 8-H), 6.28 (1H, d, $J=2.2\,{\rm Hz}$, 6-H), 5.70 (1H, d, $J=7.3\,{\rm Hz}$, glc 1"-H), 5.40 (1H, s, api 1"'-H), 3.75 (3H, s, 7-OMe) indicated that the flavonol glycosidic moiety and location of acyl group

Chart 1. Structures of Compounds 1, 2 and 3

of 3 were the same as that of 2, whose structure was also substantiated by the $^{13}\text{C-NMR}$ spectrum (Table I). Moreover, the signals due to the aromatic portion [δ 9.63 (1H, s, 4'-OH), 7.17 (1H, d, $J=15.4\,\text{Hz}$, 7-H), 7.07 (1H, d, $J=1.5\,\text{Hz}$, 2-H), 6.86 (1H, dd, J=1.5, 8.1 Hz, 6-H), 6.76 (1H, d, $J=8.1\,\text{Hz}$, 5-H), 6.14 (1H, d, $J=16.1\,\text{Hz}$, 8-H), 3.80 (3H, s, 3-OMe)] suggested the presence of a feruloyl group, which was also confirmed by observation of the FAB-MS peak due to $[M+Na]^+$ being 30 mass units higher than 2. The NOE experiment and $^{13}\text{C-NMR}$ spectrum (Table I) also supported this proposed structure, so that the full structure of 3 was characterized as 3-O-[5'''-O-feruloyl- β -D-apiofuranosyl($1'''\to 2''$)- β -D-glucopyranosyl] rhamnocitrin.

Experimental

Optical rotations were measured on a JASCO DIP-360 automatic digital polarimeter. The IR spectra were recorded with a Hitachi IR spectrometer, model 270-30. The $^1\mathrm{H-}$ and $^{13}\mathrm{C-NMR}$ spectra were measured with a JEOL JNM-GX 400 NMR spectrometer and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The FAB- and EI-MS were recorded with a JEOL DX-303 HF spectrometer and taken in a glycerol matrix containing NaI. Thin layer chromatography (TLC) was performed on precoated Kieselgel 60 F $_{254}$ plate (0.2 mm Merck) and detection was achieved by spraying 10% $\mathrm{H_2SO_4}$ followed by heating. Column chromatography was carried out with Sephadex LH-20 (Pharmacia Co., Ltd.), Bondapak C $_{18}$ (Waters Associates) and Kieselgel 60 (70—230 and 230—400 mesh, Merck).

Extraction and Separation Dried seeds $(4.5\,\mathrm{kg})$ of Astragalus complanatus collected in their natural habitat in China were extracted with MeOH and the extract $(371\,\mathrm{g})$ was partitioned between n-hexane and 80% MeOH. The 80% MeOH extract was furthr partitioned with 1-BuOH and water. The 1-BuOH soluble portion $(90\,\mathrm{g})$ was subjected to Sephadex LH-20 column chromatography with water and 10% MeOH \rightarrow MeOH to afford several fractions. The aromatic fraction $(28\,\mathrm{g})$ was chromatographed on MCI gel CHP 20P column with water and 10% MeOH \rightarrow MeOH and then fourteen fractions were obtained based upon TLC monitoring followed by column chromatography on Bondapak C_{18} and silica gel to provide compounds 1 $(31\,\mathrm{mg})$, 2 $(64\,\mathrm{mg})$ and 3 $(52\,\mathrm{mg})$.

Compound 1: A pale yellow powder, $[\alpha]_{25}^{25} - 33.8^{\circ}$ (MeOH). IR ν_{max}^{KBr} (cm⁻¹): 3432 (OH), 1660 (α , β -unsaturated carboxylic ester), 1602 (aromatic ring). UV λ_{max}^{MeoH} (nm): 267 (log ε , 4.59), 345 (log ε , 4.42). *Anal.* Calcd for $C_{43}H_{52}O_{20}\cdot 2H_2O$: C, 55.84; H, 6.10. Found: C, 55.84; H, 6.18. FAB-MS m/z: 889 [M+H]⁺, 301 [aglycone+H]⁺.

Enzymatic Hydrolysis of 1 A solution of 1 (25 mg) in acetate buffer (pH = 4.2, 12 ml) was incubated with glycosidase at $37\,^{\circ}\text{C}$ for $38\,\text{h}$ and the hydrolysate was extracted with EtOAc. The organic layer was evaporated to dryness and the residue was chromatographed on silica gel [CHCl₃-MeOH- H_2O (9:1:0.1 \rightarrow 8:2:0.2)] to provide **1a** (9 mg) as yellow amorphous powder, $[\alpha]_D^{25}$ + 54.3° (MeOH). FAB-MS m/z: 727 $[M + H]^+$, 301 [aglycone+H]⁺. ¹H-NMR (in pyridine- d_5), flavonol moiety δ : 8.49 (2H, d, J=8.8 Hz, 2',6'-H), 7.50 (2H, d, J=8.8 Hz, 3',5'-H), 6.72 (1H, d, J=8.8 Hz, 3'-H), 6.72 (1H, d, J=8.8 Hz, 3'-H),d, J = 2.2 Hz, 8-H), 6.61 (1H, d, J = 2.2 Hz, 6-H), 3.80 (3H, s, 7-OMe); glucosyl moiety δ : 6.07 (1H, dd, J=9.2, 9.5 Hz, 3-H), 5.83 (1H, d, J= 8.1 Hz, 1-H), 4.55 (1H, dd, J=9.2, 9.5 Hz, 4-H), 4.50 (1H, d, J=12.1 Hz, $6-H_a$), 4.46 (1H, dd, J=8.1, 9.2 Hz, 2-H), 4.44 (1H, d, J=12.1 Hz, $6-H_b$), 4.24 (1H, overlapped, 5-H); terpene moiety δ : 8.86 (1H, d, $J=15.8\,\mathrm{Hz}$, 1'-H), 6.88 (1H, d, J=16.1 Hz, 2'-H), 5.84 (1H, s, 4'-H), 4.73 (1H, m, 3-H), 4.23 (1H, d, J = 7.3 Hz, 7-H_a), 3.94 (1H, d, J = 7.3 Hz, 7-H_b), 2.53 (1H, dd, J = 13.6, 7.0 Hz, 2-H_a), 2.28 (1H, dd, J = 13.6, 10.3 Hz, 4-H_a), 2.18 (2H, m, 2-H_b, 4-H_b), 1.81 (3H, s, 3'-Me), 1.53 (3H, s, 5-Me), 1.19 (3H, s, 1-Me) and ¹H-¹H COSY. ¹³C-NMR (DMSO-d₆) is shown in Table I.

Compound 2: A pale yellow powder, $[\alpha]_D^{2.5} - 148.4^{\circ}$ (MeOH). IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3436 (OH), 1660 (conjugated carbonyl), 1602 (aromatic ring). UV $\lambda_{\text{moN}}^{\text{MeOH}}$ (nm): 267 (log ε , 4.58), 317 (log ε , 4.12). Anal. Calcd for $C_{36}H_{36}O_{17} \cdot 2H_2O$: C, 55.67; H, 5.19. Found: C, 55.55; H, 5.11. FAB-MS m/z: 763 [M+Na]⁺, 301 [aglycone+H]⁺. ¹H-NMR (DMSO- d_6) δ : 12.53 (1H, s), 10.56 (1H, s), 9.62 (1H, s), 8.04 (2H, d, J=8.8 Hz), 7.31 (2H, d, J=8.8 Hz), 7.19 (1H, d, J=15.8 Hz), 6.89 (2H, d, J=8.8 Hz), 6.76 (2H, d, J=8.8 Hz), 6.44 (1H, d, J=2.2 Hz), 6.28 (1H, d, J=2.2 Hz), 6.06 (1H, d, J=16.1 Hz), 5.69 (1H, d, J=7.7 Hz), 5.39 (1H, s), 3.76 (3H,

s) and $^{1}\mathrm{H}^{-1}\mathrm{H}$ COSY. $^{13}\mathrm{C}\text{-NMR}$ (DMSO- d_{6}) is shown in Table I.

Saponification of 2 Compound 2 (50 mg) was saponified with 3% KOH/MeOH in the usual manner and the product was chromatographed over silica gel [CHCl₃–MeOH–H₂O (9:1:0.1 \rightarrow 8:2:0.2)] to provide 2a (27 mg), a yellow amophous powder, $[\alpha]_D^{25}$ –39.7° (MeOH). FAB-MS m/z: 617 [M+Na]⁺, 595 [M+H]⁺, 301 [aglycone+H]⁺. ¹³C-NMR (DMSO- d_6) is shown in Table I.

Compound 3: A pale yellow powder, $[\alpha]_D^{25} - 151.1^{\circ}$ (MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3444 (OH), 1660 (conjugated carbonyl), 1606 (aromatic ring). UV $\lambda_{\text{max}}^{\text{MeOH}}$ (nm): 268 (log ε , 4.46), 330 (log ε , 4.52). *Anal.* Calcd for $C_{37}H_{38}O_{18} \cdot 3/2H_2O$: C, 55.70; H, 5.18. Found: C, 55.49; H, 5.02. FAB-MS m/z: 793 $[M+Na]^+$, 301 $[\text{aglycone}+H]^+$. ¹³C-NMR (DMSO- d_6) is shown in Table I.

Acknowledgements We are grateful to Dr. S. Yahara, Mr. K. Takeda and Mr. T. Iriguchi of this faculty for measurements of MS, ¹H- and ¹³C-NMR spectra and for their valuable suggestions.

References and Notes

- 1) Part XXX in a series of studies on the constituents of leguminous plants.
- 2) B. Cui, Y. Ru, and L. Wei, Yaoxue Xuebao, 24, 189 (1989).
- B. Cui, Y. Sakai, T. Takeshita, J. Kinjo, and T. Nohara, Chem. Pharm. Bull., 40, 136 (1992).
- 4) B. Cui, J. Kinjo, M. Nakamura, and T. Nohara, *Tetrahedron Lett.*, 32, 6135 (1991).
- 5) B. V. Milborrow, Phytochemistry, 14, 1045 (1975).
- K. R. Markham, B. Ternai, R. Stanley, H. Geiger, and T. J. Mabry, Tetrahedron, 34, 1389 (1978).
- D. E. Dorman and J. D. Roberts, J. Am. Chem. Soc., 93, 4463 (1971).
- H. Soicke, G. Al-Hassan, and K. Gorler, *Planta Medica*, 54, 175 (1988).