			TICKIC	AND TIKES DIMENS					
Of 1-Dialkylamino-propanol-2, CH ₃ CHOR'CH ₂ NR ₂				Of beta methyl choline, CH3CHORCH2NR'31-					
R	R'	°С.	' Mm.	M. p., °C.	Formula	Calcd.	Found		
CH₃	CH_3	113-116	760	$155.5 - 156.0^{\circ}$	C7H18ONI	48.99	48.99	49.12	
	C_2H_5	133-135	760	144.5^b	$C_8H_{20}ONI$	46.48	46.51	46.35	
	$i-C_{3}H_{7}$	140 - 145	758	145.5^{b}	C9H22ONI	44.21	44.00	44.10	
	$n-C_4H_9$	5558	18	$156.5 - 157.0^{\circ}$	$C_{10}H_{24}ONI$	42.15	42.30	42.16	
	C_6H_5	143 - 144	18	$139.5 - 140.0^{d}$	$C_{12}H_{20}ONI$	39.53	39.41	39.45	
	o-C6H4CH3	132 - 135	18	$141.0 - 142.0^d$	$C_{13}H_{22}ONI$	37.88	38.03	37.91	
	$m-C_6H_4CH_3$	136 - 140	12	$130.0 - 131.0^d$	$C_{13}H_{22}ONI$	37.88	37.82	37.91	
	p-C ₆ H ₄ CH ₃	140 - 143	15	$140.0 - 141.0^d$	$C_{13}H_{22}ONI$	37.88	37.81	37.85	
C2H5	CH3	46 - 47	12				• • • •		
	C_2H_5	70-72	18			• • •			
	$i-C_3H_7$	60-63	10	129.0-130.0"	$C_{12}H_{28}ONI$	38.60	38.80	38.83	
	$n-C_4H_9$	63 - 65	10			• • •			
	C_6H_5	125 - 126	11		•••				
	o-C6H4CH3	141	12	128.0^b	$C_{16}H_{28}ONI$	33.62	33.60	33.55	
	$m-C_6H_4CH_3$	141 - 142	10	$129.0 - 130.0^d$	$C_{16}H_{28}ONI$	33.62	33.50	33.52	
	p-C ₆ H₄CH₃	144-146	14	$138.0 - 139.0^{\circ}$	$C_{16}H_{28}ONI$	33.62	33. 5 0	33.65	

TABLE I ALKVI, AND ARVI, ETHERS

^a Crystallized from chloroform-ethyl acetate solution. ^b Crystallized from amyl acetate-amyl alcohol solution. ^c Crystallized from amyl acetate. ^d Crystallized from ethyl acetate. ^e The oily product was dissolved in acetic anhydride and precipitated over a period of months by layering with dry ether.

methyl iodide in toluene solution. The reaction was vigorous and required cooling. The average yields were 65-80%.

 β -Aryloxy and β -alkoxy-propyl-diethyl amines were treated with excess ethyl iodide in toluene solution. The mixture was heated on a water-bath under reflux for several hours. The yields obtained were 35–50%. Table I gives the properties of the substances prepared.

CHEMICAL LABORATORY NEW YORK UNIVERSITY NEW YORK, N. Y.

Y. A. R. Goldfarb Received June 9, 1941

p-Bromophenacyl Esters

Three unreported p-bromophenacyl esters of acids have been prepared by the method outlined by Shriner and Fuson.¹ The melting points were taken with calibrated total immersion Anschütz thermometers.

p-Bromophenacyl Oxalate.—The fine white plates from acetone, which were nearly insoluble in absolute alcohol, melted at 242° with decomposition.

Anal. Calcd. for $C_{18}H_{12}O_6Br_2$: C, 44.65; H, 2.50. Found: C, 44.50; H, 2.56.

Methyl p-Bromophenacyl Succinate.—Methyl hydrogen succinate was prepared by reaction of succinic anhydride with methanol, the product being recrystallized from carbon disulfide. The *p*-bromophenacyl ester formed white plates when recrystallized from dilute methyl alcohol, m. p. $104.6-104.8^{\circ}$.

Anal. Caled. for $C_{13}H_{13}O_{5}Br$: C, 47.43; H, 3.98. Found: C, 47.45; H, 4.08.

Methyl *p*-Bromophenacyl Glutarate.—Sodium methylglutarate was prepared by a method analogous to that reported for sodium ethylglutarate.² White plates of the *p*bromophenacyl ester are formed on recrystallization from dilute methyl alcohol, m. p. $46.6-46.8^{\circ}$.

Anal. Calcd. for $C_{14}H_{15}O_{5}Br$: C, 48.91; H, 4.41. Found: C, 48.96, 48.99; H, 4.53, 4.57.

DEPARTMENT OF CHEMISTRY THE OHIO STATE UNIVERSITY

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO RECEIVED JUNE 2, 1941

(2) Mol, Rec. trav. chim., 26, 379 (1907).

⁽¹⁾ Shriner and Fuson, "Identification of Organic Compounds," John Wiley and Sons, Inc., New York, N. Y., 1935, p. 144.