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The design and synthesis of a GPR119 agonist bearing a 2-(2,3,6-trifluorophenyl)acetamide group is
described. The design capitalized on the conformational restriction found in N-b-fluoroethylamide deriv-
atives to help maintain good levels of potency while driving down both lipophilicity and oxidative metab-
olism in human liver microsomes. The chemical stability and bioactivation potential are discussed.
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Figure 1. Structure of some known GPR119 agonists in the clinic.
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GPR119 is a G-protein coupled receptor found in human enteric
L-cells and in pancreatic b-cells. Its role in glucose homeostasis has
been the subject of numerous studies that suggest agonism of
GPR119 may be a viable and highly desirable approach to the treat-
ment of type 2 diabetes.1,2 By way of a unique glucose-dependent
mechanism, GPR119 agonism is anticipated to promote glycemic
control by stimulating the secretion of insulin from the pancreas
as well as gastrointestinal hormones (e.g., the incretins GLP-1
and GIP) from the gut.3

Ongoing research programs across the pharmaceutical industry
have led to the advancement of small molecule GPR119 agonists
into clinical trials (e.g., clinical candidates 1 and 2; Fig. 1).4 In this
Letter, we report the design and synthesis of compound 3 (Fig. 2), a
novel GPR119 agonist bearing an unprecedented 2-(2,3,6-trifluor-
ophenyl)acetamide group.

Initial interest in this series originated from the identification of
compound 4, which exhibited excellent activity in our c-AMP func-
tional assay (13 nM, 87% intrinsic activity; Table 1); however, 4
was highly lipophilic (E Log D = 4.3)5 which resulted in high oxida-
tive turnover in human liver microsomes (HLM). Interestingly, as
exemplified by compounds 5 and 6 (Table 1), replacement of the
2,3,6-trifluorophenyl group in 4 with more classical GPR119 phar-
macophores led to a decrease in potency. Systematic substitution
of any of the fluorine atom on the aromatic ring by a hydrogen
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Figure 2. 2-(2,3,6-Trifluorophenyl)acetamide GPR119 agonists.
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Table 1
Representative examples of analogs and their respective properties
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Entry Compound R1 R2a R3 EC50 ± SDb nM IA ± SDc % CLint (HLM)d (mL/min/kg) E Log D

1 3 1-MecPr F (S) 2,3,6-Trifluorophenyl 80 ± 41 (39) 107 ± 10 (39) 42.4 3.4
2 4 tert-Bu Me 2,3,6-Trifluorophenyl 13 ± 8 (4) 87 ± 12 (4) 230 4.3e

3 5 tert-Bu Me p-PhSO2Me 884 (2) 47 (2) 136 2.8e

4 6 tert-Bu Me 1-p-Ph-1H-tetrazole 267 ± 235 (4) 72 ± 14 (4) >270 3.1e

5 7 tert-Bu Me 2,3-Difluorophenyl 75 (2) 107 (2) >300 4.2e

6 8 tert-Bu Me 2,5-Difluorophenyl 78 (2) 104 (2) >300 4.2e

7 9 tert-Bu Me (S)f 2,6-Difluorophenyl 120 ± 28 (3) 101 ± 9 (3) nd 3.9
8 10 tert-Bu Me 2-Fluorophenyl 808 (2) 97 (2) >300 4.1e

9 11 tert-Bu Me 3-Fluorophenyl 340 (2) 102 (2) >300 4.2e

10 12 tert-Bu Me Phenyl 5980 (1) 100 (1) 247 4.0e

11 13 i-Pr Me 2,3,6-Trifluorophenyl 32 ± 14 (4) 88 ± 8 (4) 205 4.0
12 14 1-MecPr Me (S)f 2,3,6-Trifluorophenyl 44 ± 15 (5) 124 ± 16 (5) >300 3.9
13 15 1-MecPr Me (R)f 2,3,6-Trifluorophenyl 236 ± 44 (5) 97 ± 7 (5) 187 3.9
14 16 i-Pr H 2,3,6-Trifluorophenyl 409 ± 285 (4) 68 ± 9 (4) nd 3.4
15 17 1-MecPr F (R) 2,3,6-Trifluorophenyl 1380 (1) 100 (1) 63.8 3.4
16 21 1-MecPr H 2,3,6-Trifluorophenyl 868 ± 301 (3) 111 ± 11 (3) nd 3.5

nd: not determined.
a The configuration of the stereocenter is indicated in parentheses.
b Potency in the human recombinant cell-based c-AMP functional assay. See online Supplementary data for more details. Number of runs indicated in parentheses. SD:

standard deviation of the mean (for n >2).
c Intrinsic Activity in the c-AMP assay. Number of runs indicated in parentheses. SD: standard deviation of the mean (for n >2).
d CLint refers to total intrinsic clearance obtained from scaling in vitro HLM half-lives.
e Calculated Log D.
f The configuration was arbitrarily assigned.
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atom also led to compounds of increasingly suboptimal potency
(compare 4 vs 7–12). Furthermore, compounds 7–12 had high met-
abolic turnover in HLM as anticipated by their lipophilicity similar
to 4. Replacement of the acid labile tert-butyl carbamate by an iso-
propyl (i-Pr) or a 1-methylcyclopropyl (1-MecPr) carbamate also
led to compounds of similar lipophilicity and high clearance
in vitro (compounds 13–15).

The presence of the methyl group (compare 13 vs 16) and the
configuration of the stereocenter (compare 14 vs 15) both had an
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Scheme 1. Synthesis of compound 3.
influence on potency. Thus, although a productive interaction with
the receptor cannot be ruled out, it appeared reasonable to suggest
that the stereocenter helps reduce the configurational entropic
penalty upon binding.6,7 Mindful of the gauche effect found in N-
b-fluoroethylamides,8 we proposed the synthesis of conformation-
ally restricted compounds such as 3. The fluorine-containing ste-
reocenter was expected to positively impact the conformational
and/or vibrational component of the configurational entropy, and
thereby help maintain potency.7 In addition, this fluorine atom
could help reduce lipophilicity and metabolic turnover.

Compound 3 was synthesized in high yield and high enantiose-
lectivity as shown in Scheme 1. a-Fluorination of N-Boc-4-piperi-
dineacetaldehyde using MacMillan’s organocatalytic methodology
Figure 3. Averaged conformation of 3 in solution on the NMR timescale.
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Figure 4. Representative structure of glutathione adduct 24.
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produced compound 18 (98% ee),9 which was then converted to
the a-fluoro azide 19 in 76% yield via a Mitsunobu-type reaction.
Reduction of the azide to the amine followed by amide bond cou-
pling under classical conditions (EDCI/HOBt/Et3N) gave intermedi-
ate 20. This intermediate was converted to the desired product 3
by BOC removal and subsequent installation of the 1-MecPr
carbamate.10

Compound 3 proved to be a full agonist in our functional c-AMP
assay and its EC50 remained within two fold of the methyl analog
14. Importantly, 3 was markedly more stable in HLM incubations
than the corresponding methyl-substituted compounds 14 and
15 as well as less lipophilic.

We next sought to confirm the gauche effect hypothesis by
studying the conformation of compound 3 in solution. Indeed, as
depicted in Figure 3, NMR spectroscopic analysis (600 MHz/
CDCl3/300 K) showed that the N-b-fluoroethylamide favors adopt-
ing a gauche conformation, which constitutes about 75% of the con-
former population on the NMR timescale.11

As observed previously in the methyl case (compounds 14 and
15), the configuration of the stereocenter in 3 had an impact on po-
tency in the functional c-AMP assay (compare 3 vs 17). Again, since
the topology of the receptor is not known, one can only speculate
around the causes of this selectivity. Although it could be the result
of the conformational bias induced by the stereocenter,11 a produc-
tive interaction between the fluorine atom of 3 and the receptor
(and/or an unfavorable one in the case of 17) cannot be ruled
out. The decrease in potency from 3 to 21 is also worth mentioning.
In this case, conformational analysis of simplified versions of com-
pounds 3 and 21 revealed energetically similar conformer distribu-
tions.11 The low energy conformers adopted by the fluoro-
substituted analog 3, including the most stable conformation
shown in Figure 3, are easily accessible to the unsubstituted analog
21. This suggests that the energy required to achieve the bioactive
conformation, whatever this might be, is not the main source of the
potency increase from 21 to 3. While the conformer distribution
does not change significantly, torsional scans for the dihedral an-
gles flanking the F atom revealed energy wells that are narrower
for the fluoro-substituted analog 3 compared to 21.11 Therefore,
it is conceivable that 3 experiences a less significant loss of vibra-
tional entropy upon binding and that this factor contributes to its
increase of potency over 21.7 However, in this case too, a produc-
tive interaction between the fluorine atom and the receptor cannot
be ruled out.

In considering further profiling of 3, we were initially concerned
about the formation of a potentially reactive aziridine such as 22
under physiologic conditions (Scheme 2). However, exposure of 3
to various conditions expected to promote cyclization did not lead
to the formation of 22 or dihydrooxazole 23.12,13

Although the risk of aziridine formation appeared low, subse-
quent studies assessing the bioactivation potential of 3 in NADPH-
and glutathione (GSH)-supplemented HLM revealed a risk of reac-
tive species formation by metabolic activation. Formation of a GSH
adduct was clearly observed: m/z = 720 (MH+); m/z = 645 (loss of
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Scheme 2. Attempts of intramolecular displacement of fluorine in 3.
glycine); m/z = 591 (loss of glutamate).14,15 A proposed structure
for the GSH conjugate of 3 that is consistent with the observed
mass spectrum is compound 24 shown in Figure 4.16 This GSH ad-
duct is postulated to occur via an ipso substitution of one of the
pendant fluorine atoms in the course of P450 catalyzed phenyl ring
epoxidation.17 The formation of 24 was NADPH-dependent, sug-
gesting the involvement of cytochrome P450 in the bioactivation
of 3. Also, inclusion of the specific CYP3A4 inhibitor ketoconazole
in the HLM incubations eliminated conjugate formation and over-
all metabolism, implicating that CYP3A4 was responsible for the
oxidative metabolism/bioactivation of 3.

In conclusion, we have described the design and synthesis of
compound 3, a novel GPR119 agonist bearing a N-b-fluoroethyla-
mide motif as key element of design. This group helped maintain
good agonist potency while reducing the lipophilicity and oxida-
tive metabolism in HLM in vitro. However, recognizing the poten-
tial for immune-mediated toxicity due to reactive metabolite
formation, further pharmacologic and pharmacokinetic profiling
of 3 was suspended.18

Supplementary data

Supplementary data (details related to the in vitro c-AMP func-
tional assay, NMR and computational studies around compound 3,
collision-induced dissociation spectrum of compound 24) associ-
ated with this article can be found, in the online version, at
doi:10.1016/j.bmcl.2011.01.088.
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