CAMELLIIN B AND NOBOTANIN I, MACROCYCLIC ELLAGITANNIN DIMERS AND RELATED DIMERS, AND THEIR ANTITUMOR ACTIVITY

Takashi YOSHIDA,^a Tong CHOU,^a Kumiko HABA,^a Yoshiaki OKANO,^a Tetsuro SHINGU,^b Ken-ichi MIYAMOTO,^c Ryozo KOSHIURA,^c and Takuo OKUDA^{*,a}

Faculty of Pharmaceutical Sciences, Okayama University,^a Tsushima, Okayama 700, Japan, Faculty of Pharmaceutical Sciences, Kobe Gakuin University,^b Ikawadani, Nishi-ku, Kobe 673, Japan and School of Pharmacy, Hokuriku University,^c Kanagawa-machi, Kanazawa 920-11, Japan

Camelliin B and nobotanin I, dimeric hydrolyzable tannins of a new class having macrocyclic structures, were isolated from <u>Camellia japonica</u> and <u>Heterocentron roseum</u>, respectively. Nobotanin G and H of the structures related to nobotanin I, were also obtained from <u>H. roseum</u>. Camelliin B and also woodfordin C, a macrocyclic dimer from <u>Woodfordia fruticosa</u>, exhibited marked host-mediated antitumor activities.

KEYWORDS camelliin B; <u>Camellia japonica</u>; nobotanin G; nobotanin H; nobotanin I; <u>Heterocentron roseum</u>; tannin; hydrolyzable tannin; macrocyclic dimer; antitumor activity

Oenothein B (1)¹⁾ and woodfordin C (2),²⁾ dimeric hydrolyzable tannins isolated from <u>Oenothera erythrosepala</u> (Onagraceae)¹⁾ and <u>Woodfordia fruticosa</u> (Lythraceae),²⁾ have unique macrocyclic structures, and the former showed marked host-mediated antitumor activity.³⁾ A new dimer of this type, camelliin B (3), has now been isolated from the flower buds of <u>Camellia japonica</u> (Theaceae). A macrocyclic dimer of another type, nobotanin I (13) has also been isolated from the leaves of <u>Heterocentron roseum</u> (Melastomataceae), accompanied by the dimers of related structures, nobotanin G (11) and H (12).

Camelliin B (3), $C_{75}H_{52}O_{48}.15H_{2}O$, [α] -24° (MeOH), showed the [M+Na] $^{+}$ ion at m/z 1743 in the fastatom bombardment mass spectrum (FAB-MS). Hydrolysis of 3 with 5% $\mathrm{H_2SO_4}$ under reflux for 9 h gave gallic acid, valoneic acid dilactone (5) and glucose. The 1 H nuclear magnetic resonance (NMR) spectrum (500 MHz,acetone-d₆), in which the dual peak of each signal was shown in a ratio of ca. 4:1 due to anomerization in one of the glucose cores, indicated the presence of three galloyl groups [δ 7.17, 7.19; 7.11, 7.08; 6.81, 6.84 (each pair corresponds to 2H in the peak area] and two valoneoyl groups [δ 7.41, 7.36; 7.15, 7.15; 6.81, 6.80; 6.72, 6.70; 6.46, 6.44; 5.90, 5.97 (each pair corresponds to 1 H). A strong Cotton effect, [θ] 27.8×10^4 at 220 nm, in the circular dichroism (CD) spectrum of 3, showed that the configurations of these valoneoyl groups are both \underline{S}^{4} . The ${}^{1}\mathrm{H}-{}^{1}\mathrm{H}$ shift correlation spectrum showed that the hydroxyl groups on the two 4C_1 glucopyranose cores, except for that on an anomeric center, are all acylated. An anomeric acyloxy group on a glucose core in 3 was shown to be β , by a large coupling constant (J=8.5 Hz) of an anomeric proton signal at δ 5.84. The presence of the valoneoy1 group at 0-4~0-6 of each glucose core was shown by the large difference $^{5)}$ between the chemical shifts of C-6 methylene protons [δ 5.20 (dd, J=7.5, 12 Hz), 3.93 (dd, J=5.5, 12 Hz); 4.94 (dd, J=5.5, 13 Hz), 3.96 (d, J=13 Hz)]. Methylation of 3 with $Me_2SO_4-K_2CO_3$ in dry acetone furnished hexacosa-O-methylcamelliin B (4) and a partially degraded product (7). Although 7 was indicated by the $^{1}\text{H-NMR}$ spectrum [δ 7.21, 7.11 (each 2H, s), 6.33, 6.96, 7.27 (each 1H, s), 5.24 (d, J=4 Hz, H-1)] to be a methylated derivative of $2,3-di-\underline{0}-galloy1-4,6-(\underline{S})-valoneoy1-\alpha-D-glucose, it was clearly$ different from the hexacosamethyl derivative [α -anomer (9); δ 7.26 (4H, s), 6.49, 6.76, 7.30 (1H each, s), 5.24 (d, J=4 Hz)] of rugosin B (8).⁶) Therefore, 7 was considered to be an isomer of 9, differing only in the orientation of valoneoyl group [methylate of isorugosin B $(6)^{7}$]. Partial hydrolysis of 3 in boiling water yielded ${f 5}$ and oenothein C ${f (10)}.^{8ig)}$ In an equilibrated anomer mixture of ${f 3},$ the ${f lpha}$ -anomer was predominant (ca. 4:1) as indicated by the ratio of unacylated anomer carbon signals at δ 92.2 (α) and 96.7

November 1989 3175

(β) in the 13 C-NMR spectrum. The H-1 signal of this α -anomer resonates, as does that of 1^{1}), at a lower field (δ 5.94, d, J=4 Hz) than those of 6 (δ 5.54, d, J=3.5 Hz) and 8 (δ 5.52, d, J=3.5 Hz). Based on these data, structure 3 of camelliin B was assigned.

Nobotanin G (11), $C_{68}H_{50}O_{44}.9H_{2}O$, [α] $_{D}$ +56 o (MeOH), nobotanin H (12), $C_{89}H_{60}O_{57}.12H_{2}O$, [α] $_{D}$ +80 o (MeOH), and nobotanin I (13), $C_{89}H_{58}O_{56}.7H_2O$, [α] $_D$ +70 O (MeOH), were shown to be mutually related dimeric hydrolyzable tannins as follows: Hydrolysis of these dimers with 5% $\rm{H_2SO_4}$ gave gallic acid, ellagic acid, $\rm{5}$ and glucose. In an aqueous solution at 37° C, nobotanin I (13) was converted within 36 h to nobotanin H (12) which was further hydrolyzed in boiling water to nobotanin G (11). The $^{
m I}$ H-NMR spectrum (400 MHz, acetone- d_6) of nobotanin G (11) indicated that this dimer is composed of three galloyl groups [δ 7.24, 7.14, 7.00 (each 2H, s)], a valoneoy1 group, a hexahydroxydiphenoy1 (HHDP) group [& 7.12, 6.64, 6.55, 6.37 and 6.12 (each IH, s)], and two ${}^4\text{C}_1$ glucopyranose cores. One (glucose II) of the glucose cores in 11 are fully acylated and has the ester linkages bridged on 0-4 \sim 0-6, as indicated by the methylene proton signals at δ 5.32 (dd, J=6, 13 Hz) and 3.89 (d, J=13 Hz), which are analogous to those of $1 \sim 3$. The upfield shifts of H-2 (δ 3.66, dd, J=8, 10 Hz) and H-3 (δ 3.85, t, J=10 Hz) of another glucose core (glucose I) suggest the presence of free hydroxyl groups at C-2 and C-3. Hydrolysis of 11 in boiling water for 8 h yielded strictinin $(14)^9$) and another hydrolysate $(15)^{10}$) having two galloyl groups at 0-1 and 0-6, and a dilactonized valone yl group at 0-4 of $\beta-D$ -glucose. Therefore, structure of nobotanin G was determined to be 11. Since the $^1 ext{H-NMR}$ spectrum of nobotanin H (12) showed the presence of two valoneoyl groups, an HHDP group, three galloyl groups [8 7.19, 7.13, 6.65, 6.54, 6.48, 6.40, 6.20, 6.12 (each 1H, s); 7.27, 7.12, 6.98 (each 2H, s)], and fully acylated ⁴C₁ glucose cores, nobotanin H was characterized as a monovaloneate (12) of 11. The configurations of the HHDP and the valone oyl groups in 12 are all \underline{S} , as revealed by a positive Cotton effect, $[\theta]_{225}$ +39 x 10^4 , in the CD spectrum of 12. Five aromatic proton signals (δ 6.12, 6.20, 6.40, 6.54 and 7.13) due to an HHDP and a valoneoyl group in the $^1\mathrm{H-NMR}$ spectrum of 12 measured at ambient temperature, were broadened probably by restricted rotation of the ether bond in the valoneoyl group. However, these signals were sharpened when recorded at 40° C, indicating that these two groups in 12 are 3176 Vol. 37, No. 11

spatially near. Inspection with a stereomodel of 12 indicated the most plausible orientations of the valone yl groups at $0-2 \sim 0-3$ of each glucose core are as illustrated in the formula 12.

The $^1\text{H-NMR}$ spectrum of nobotanin I (13) was showed closely similar to that of 12, except for a significant downfield shift of one of the 1H-aromatic singlets (δ 6.21 \rightarrow 6.94), and an upfield shift of the proton (δ 7.19 \rightarrow 7.03) ascribable to that of the galloyl moiety in one of the valoneoyl groups in 13. Upon comparison of the $^{13}\text{C-NMR}$ spectra of 12 and 13, 13 showed upfield shifts of an ester carbonyl signal (δ 166.8 \rightarrow 163.2) and the C-5 signal (δ 137.7 \rightarrow 132.2) of the HHDP group, and a downfield shift of C-4 signal (δ 145.2 \rightarrow 151.6) of the HHDP group. These spectral differences and the facile hydrolysis of 13 to 12, which are analogous to those between praecoxin C and rugosin C, 11 led to the structure 13 of nobotanin I. Nobotanin I is the first example of a dimer forming a macro-ring through an intramolecular depside linkage.

Upon intraperitoneal injection of 10 mg/kg each of these tannins and woodfordin C (2), at 4 days before intraperitoneal inoculation of sarcoma 180 cells (1 x 10^5), carried out in a way analogous to that for 1,3) camelliin B (3) and woodfordin C (2) markedly prolonged the life-span of the mice (+36% and 60%, respectively), and they respectively induced 60-day survival of 2 and 1 of 5 mice.

REFERENCES AND NOTES

- 1) T. Hatano, T. Yasuhara, M. Matsuda, K. Yazaki, T. Yoshida and T. Okuda, Chem. Pharm. Bull., <u>37</u>, 2269 (1989).
- 2) T. Yoshida, T. Chou, A. Nitta and T. Okuda, Heterocycles, in press.
- 3) K. Miyamoto, N. Kishi, R. Koshiura, T. Yoshida, T. Hatano and T. Okuda, Chem. Pharm. Bull., 35, 814 (1987).
- 4) T. Okuda, T. Yoshida, T. Hatano, T. Koga, N. Toh and K. Kuriyama, Tetrahedron Lett., 23, 3937 (1982).
- 5) C. K. Wilkins and B. A. Bohm, Phytochemistry, <u>15</u>, 211 (1976).
- 6) T. Okuda, T. Hatano, K. Yazaki and N. Ogawa, Chem. Pharm. Bull., 30, 4230 (1982).
- 7) T. Hatano, R. Kira, T. Yasuhara and T. Okuda, Heterocycles, 27, 2081 (1988).
- 8) T. Okuda, T. Hatano, N. Ogawa, R. Kira and M. Matsuda, Chem. Pharm. Bull., <u>32</u>, 4662 (1984).
- 9) T. Okuda, T. Yoshida, M. Ashida and K. Yazaki, J. Chem. Soc., Perkin Trans. 1, 1983, 1765.
- 10) T. Yoshida, Y. Ikeda, H. Ohbayashi, K. Ishihara, W. Ohwashi, T. Shingu and T. Okuda, Chem. Pharm. Bull., 34, 2674 (1986).
- 11) T. Okuda, T. Hatano and K. Yazaki, Chem. Pharm. Bull., <u>31</u>, 333 (1983).

(Received October 2, 1989)