INVESTIGATION OF NITROGEN- AND SULFUR-CONTAINING HETEROCYCLES XXX.* REACTION OF 2-MERCAPTO-3-UREIDO-6-CHLOROPYRIDINE ## WITH PHENACYL HALIDES L. G. Levkovskaya, V. V. Makeeva, and T. S. Safonova UDC 547.822.5.7'864 2-Mercapto-3-ureido-6-chloropyridine reacts with the ortho, meta, and para derivatives of phenacyl halides to give 2-phenacylthio-3-ureido-6-chloropyridines, which are readily cyclized to 6-arylpyrido[2,3-b][1,4]thiazines regardless of the presence or absence of a substituent in the meta and para positions of the benzene ring. In order to synthesize 6-arylpyrido[2,3-b][1,4]thiazines from 2-mercapto-3-ureido-6-chloropyridine (I), we investigated the reaction of I with the ortho, meta, and para derivatives of phenacyl halides. Compound I reacts with o-chloro-, o-boromo-, o-iodo-, o-methyl-, o-, m-, and p-fluoro, and o,p-dimethoxy-phenacyl halides and bromophenyl isopropyl ketone to give 2-phenacylthio-3-ureido-6-chloropyridines (III-XI, Table 1). In the preparation of IV and V, we also isolated 6-arylpyrido[2,3-b][1,4]thiazines (XII and XIII). Compounds III and VI-X, which have a substituent in the ortho position of the benzene ring of the carbonyl fragment of the molecule, do not change on standing in air and in solution and during recrystal-lization from polar solvents and form hydrazones XV and XVI. On the other hand, regardless of the presence or absence of a substituent in the meta and para positions, IV, V and XI are unstable, and are cyclized to 6-arylpyridothiazines (XII-XIV) on standing in alcoholic alkali solutions or on heating with dimethyl-formamide (DMF). This process is accompanied by facile splitting out of a urea residue. Compounds III and VI-X, in which the ortho substituent sterically hinders the formation of an N_5-C_6 bond, are not cyclized to 6-arylpyridothiazines. A urea residue is not split out in this case even under more severe conditions. III R=H, R¹=o-F; IV R=H, R¹=m-F; V R=H, R¹=p-F; VI R=H, R¹=o-Br; VII R=H, R¹=o-Cl; VIII R=H, R¹=o-Cl3; IX R=H, R¹=o-Cl4; XI R=H, R¹=o-I; XI R=CH3; R¹=H; XII R=H, R¹=m-F; XIII R=H, R¹=o-F; XIV R=CH3, R¹=H; XV R=H, R¹=o-Γ; XVI R=H, R¹=o-F 6-Arylpyridothiazines XIII and XIV were also synthesized by reaction of 2-mercapto-3-amino-6-chloropyridine (II) with p-fluorophenacyl halide and bromophenyl isopropyl ketone, respectively. *See [1] for communication XXIX. S. Ordzhonikidze All-Union Scientific-Research Pharmaceutical Chemistry Institute, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 798-800, June, 1974. Original article submitted December 14, 1972; revision submitted December 7, 1973. © 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00. TABLE 1. Characteristics of the Compounds Obtained | Com-
pound | mp,℃ ^a | Empirical
formula | Found, % | | | | | Calc., % | | | | | Yield, % | |--|--|--|--|--|---|---|---|--|---|---|--|--|--| | | | | С | Н | C! | N | s | С | Н | CI | N | s | Yie | | III IV V VII VIII IX X XI XIII XIII XIV XV XVI | 195—197
21/—219
205—207
205—207
184—185
190—192
175—177
187—189
170—172
152—154
142—144
95—96
225—227
188—190 | C ₁₄ H ₁₁ CIFN ₃ O ₂ S
C ₁₄ H ₁₁ CIFN ₃ O ₂ S
C ₁₄ H ₁₁ CIFN ₃ O ₂ S
C ₁₄ H ₁₁ ErCIN ₃ O ₂ S
C ₁₄ H ₁₁ CI ₂ N ₃ O ₂ S
C ₁₅ H ₁₄ CIN ₃ O ₂ S
C ₁₅ H ₁₆ CIN ₃ O ₄ S,
C ₁₄ H ₁₁ CIN ₃ O ₂ S
C ₁₆ H ₁₆ CIN ₃ O ₂ S
C ₁₆ H ₁₆ CIN ₂ S
C ₁₃ H ₃ CIFN ₂ S
C ₁₃ H ₃ CIFN ₂ S
C ₁₅ H ₁₅ CIPN ₂ S
C ₂₀ H ₁₅ CIPN ₂ O ₅ S
C ₂₀ H ₁₅ CIPN ₂ O ₅ S
C ₂₀ H ₁₅ CIPN ₂ O ₅ S | 49,6
49,8
49,8
42,0
47,2
53,8
50,2
37,3
54,7
56,4
55,8
62,3
46,3
41,3 | 3,1
2,9
3,0
3,3
4,2
4,4
2,2
4,4
3,0
3,1
4,6
3,2 | 10,5
10,2
10,4
28,7*
19,6
10,4
9,1
—
10,0
—
12,5
6,7
20,2 | 12,2
12,2
12,4
10,5
12,1
12,3
11,2
9,3
11,8
10,3
10,4
10,0
18,8 | 9,6
9,2
9,7
8,3
9,4
9,6
8,5
7,1
9,4
11,9
11,5
11,3
6,8
5,9 | 49,5
49,5
49,5
41,9
47,3
53,6
50,3
37,5
54,9
56,0
62,4
46,2
41,3 | 3,2
3,2
3,2
2,7
3,1
4,2
4,2
2,4
4,6
2,9
2,9
4,5
2,6 | 10,4
10,4
10,4
28,8*
19,7
10,6
9,3
—
10,1
—
12,3
6,8
19,9 | 12,4
12,4
12,4
10,5
11,8
12,5
11,0
9,4
12,0
10,0
9,7
18,9 | 9,4
9,4
9,4
8,0
9,5
8,4
7,1
9,1
11,5
11,5
11,1
6,2
5,5 | 99
53
59
88
75
85
77
84
57
34
75
66
88
82 | ^aCompounds III, X-XIII, and XVI were crystallized from ethanol, IV-IX and XV were crystallized from dimethylformamide—water (1:2), and XIV was crystallized from benzene. ^bFound: I 28.9%. Calculated: I 28.4%. ^cFound: Br+Cl 16.6%. Calculated: Br+Cl 16.9%. The structures of 2-phenacylthio-3-ureidopyridines III-XI and 6-arylpyridothiazines XII-XIV were confirmed by means of IR and PMR spectroscopy. The IR spectra of III-XI contain the absorption bands of ketone and amide CO groups (1650-1690 cm⁻¹) and NH and NH₂ groups (3450-3480, 3340-3360, and 3250-3290 cm⁻¹), which are absent in the spectra of XII-XIV. A singlet from the protons of the CH₂ group is observed in the PMR spectra of XII and XIII; this is in agreement with their 7H structure. ## EXPERIMENTAL The IR spectra of mineral oil suspensions of the compounds were recorded with a Perkin-Elmer spectrometer. The UV spectra of alcohol solutions were recorded with an EPS-3 spectrophotometer. The PMR spectra were recorded with a JNM 4H spectrometer (100 MHz) with tetramethylsilane as the internal standard. The compounds were chromatographed on Silufol UV-254 in benzene-n-heptane-ethyl acetate-ethanol (19:1:2:2). The chromatograms were developed with concentrated H_2SO_4 and examined in UV light. Data on III-XIV are presented in Table 1. 2-Fluorophenacylthio-3-ureido-6-chloropyridine (III). A solution of 0.8 g (4.8 mmole) of a o-fluorophenacyl chloride in 5 ml of ethanol was added at $18-20^{\circ}$ to a solution of 1.0 g (4.8 mmole) of I in 15 ml of ethanol containing 0.3 g (4.9 mmole) of KOH, and the mixture was stirred for 3 h. The resulting precipitate was removed by filtration, washed successively with water and petroleum ether, and dried to give 1.44 g of colorless crystals. PMR spectrum in C_5D_5N : 4.71 ppm (2H, CH₂). Compounds X and XI were similarly obtained. PMR spectrum of XI in $CDCl_3$: 1.58 ppm (6H, two CH_3 groups). 4-Fluorophenacylthio-3-ureido-6-chloropyridine (V) and 2-Chloro-6-(4-fluorophenyl)-7H-pyrido-[2,3-b][1,4]thiazine (XIII). The method used to prepare compound III was used to obtain these compounds from $1.5 \, \mathrm{g}$ (7.3 mmole) of I and 1.2 g (6.8 mmole) of 4-fluorophenacyl chloride. The reaction was carried out at $-5 \, \mathrm{to} -10^{\circ}$, and the yield of colorless crystals of V with R_f 0.09 was 1.47 g (59%). The filtrate remaining after separation of V was poured into water, and the resulting precipitate was removed by filtration, washed successively with water and petroleum ether, and dried to give 0.51 g of light-yellow needles of XIII (25%). PMR spectrum in CDCl₃: 4.02 ppm (2H, 7-CH₂). The method used to prepare V was used to synthesize IV and VI-IX. In the preparation of IV, pyridothiazine XII was additionally isolated from the filtrate. PMR spectra: 3.18 ppm (2H, CH_2) for VII in $CDCl_3$, 2.43 ppm (3H, CH_3) for VIII in C_5D_5N , and 4.65 ppm (2H, CH_2). 2-Chloro-6-(4-fluorophenyl)-7H-pyrido[2,3-b] [1,4]thiazine (XIII). A) A mixture of 0.3 g (0.88 mmole) of V in 6 ml of dimethylformamide and 1.5 ml of water was refluxed for 3-5 h, after which 10-15 ml of water was added, and the resulting precipitate was removed by filtration, washed with water, and dried to give 0.18 g (75%) of light-yellow needles of XIII with mp 142-144°. B) A solution of 1.0 g (5.9 mmole) of 4-fluorophenacyl chloride in 10 ml of methanol was added to a solution of 1.0 g (6 mmole) of Π in 15 ml of methanol containing 0.36 g (6 mmole) of KOH, and the mixture was stirred at 18-20° for 3-5 h and then allowed to stand for 12 h. The resulting precipitate was removed by filtration, washed successively with water and petroleum ether, and dried to give 1.1 g (63%) of XIII with mp 142-144° and R_f 0.55 (yellow spot). The IR spectra and chromatograms of the substances obtained by methods A and B were identical. 2-Chloro-6-phenyl-7,7-dimethylpyrido[2,3-b][1,4]thiazine (XIV). A) The method used to prepare XIII (method A) was used to obtain 0.47 g of light-yellow crystals of this compound. - B) A solution of 0.5 g (3 mmole) of II containing 0.18 g (3 mmole) of KOH was added to a solution of 0.6 g (2.6 mmole) of bromophenyl isopropyl ketone in 10 ml of methanol, and the solution was then stirred at 60° for 3 h, cooled, and filtered. The filtrate was vacuum evaporated to one third of its original volume, and 15-20 ml of water was added. The resulting precipitate was removed by filtration and worked up as indicated for XIII (method B) to give 0.59 g (66%) of a product with R_f 0.88. PMR spectrum in CDCl₃: 1.52 ppm (6H, two CH₃ groups). - $\underline{2,4\text{-Dinitrophenylhydrazones XV}}$ and XVI. These compounds were obtained as yellow crystals. IR spectrum of XV: 3500, 3240-3340 cm⁻¹ (NH, NH₂), 1650 cm⁻¹ (amide CO). IR spectrum of XVI: 3460, 3280-3350 cm⁻¹ (NH, NH₂), 1680 cm⁻¹ (amide CO); UV spectrum, λ_{max} , nm (log ϵ): 260 (4.18), 361 (4.16). ## LITERATURE CITED 1. N. V. Sazonov and T.S. Safonova, Khim. Geterotsikl. Soedin., 1694 (1973).