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      (4RS,7RS)-11-Hydroxy-15-norsolavetivane, a versatile interme-

diate for the synthesis of all 15-oxygenated T-type spirovetivanes, 

has been synthesized with high stereoselectivity. The synthesis

has also been applied to preparation of (±)-[8,8-2H2]isolubimin.

15-Oxygenated T-type spirovetivane sesquiterpenes,2j represented by iso-

lubimin (1), lubimin (2), and oxylubimin (3), are produced by potato tubers in-

fected with fungi and qualified as phytoalexins.3) We have recently reported the

first total synthesis of (±)-2, (±)-3, and their related compounds via (4RS, 7RS)-

11-hydroxy-15-norsolavetivane (±)-(4) as a versatile intermediate, which has been

prepared by π-cyclization reaction of anti-8-methylbicyclo [2.2.2] octene diol

monomylates4) (5). However, this crucial reaction proceeded with low stereo-

selectivity at C-7 of the cyclized products, resulting in formation of (±)-4 only

in 35% isolated yield. On the other hand, the corresponding reaction of the 5-

methyl derivatives (6) led to exclusive formation to (4RS,7RS)-11-hydroxysola-

vetivane (±)-(7) in a hiqh yield (63-69%).5) These results suggested that intro-

duction of an easily removable functional group into C-5 of compounds 5 might 
increase the stereoselectivity in the cyclization reaction. We disclose herein a

highly efficient synthesis of (±)-4 as well as its application to the synthesis

of (±)-[8,8-2H2] isolubimin (±)-(1-D), which will be useful for studies of the

biosynthesis.6)

 The present synthesis involves the stereoselective formation of (4RS,7RS)-10-

chloro-11-hydroxy-15-horsolavetivane (±)-(8) from 5-chloro derivatives (±)-(9)
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Scheme 1.

of 5 at the relevant cyclization stage. Thus readily available 4-methoxy-6-

methyl-2-oxo-3-cyclohexenylacetonitrile7) (10) was treated with catechylphospho-

trichloride8) and base (DBU, benzene, reflux, 2h) to give chlorodienyl ether (11)

(98%)9) (Scheme 1). Cycloaddition of 11 with methyl vinyl ketone (xylene, 150℃,

7d) afforded a mixture of four stereoisomeric adducts, which was separated by 

chromatography over silica gel to give the anti, endo- (12), anti, exo- (12a), 
syn, endo- (13), and syn, exo-adducts (13a) in 40, 28, 3, and 12% yields, respec-

tively.10) A mixture of the anti-adducts (12 and 12a) was treated with methyl-

lithium (ether-THF, -78℃, 2h) to yield smoothly oxyisopropyl cyanides (14),

which were converted in a three-step process (DIBAH; NaBH4; McSO2Cl) into the 

correspondinq monomesylates (9) (92%). The cyclization in question proceeded most

effectively as follows; the compounds (2), when treated with formic acid (20℃, 2

h), were transformed into prenyl mesylate (15), which was heated with oxalic acid

(a 5:1 mixture of MIBK and water, 130℃, 8h) to afford 8 with the desired (7RS)-

configuration in 72% yield along with its dehydrated product (16) (19%). It 

should be noted that any trace amount of the corresponding (7SR)-isomer was not 

detected by HPLC. Compound 8 was then reduced by a modification of the Heathcock

procedure11) (Zn-Ag couple, MeOH-AcOH, 20℃, 1h) to the corresponding dechloro

enone (4) in a quantitative yield, which was identical with an authentic sample4)

in all respects. The present result indicates that the intermediate (±)-4 has

been prepared in 44.1% overall yield from 10 (9 steps).
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 The title compound, isolubimin12) (1), has been considered to play an impor-

tant role in the biogenetic pathway of various spirovetivane phytoalexins in the 

Solanaceae family.13) Thus the present result was applied to the synthesis of

8,8-deuterated (±)-isolubimin (±)-[8,8-2H2](1)[(±)-1-D] for the biosynthetic

studies. The synthesis was commenced by transformation of 14 into the doubly 

deuterated mesylates (9-D) in a four-step process [Jones oxidation; CH2N2; LiAlD4 
(D2-content, over 98%); McSO2Cl] (78%). The mesylates were treated successively
with formic acid (20℃, 1h) and with oxalic acid (a 1:2 mixture of McCN and

water, 90℃, 1h) to give (±)-8-D in 68% yield with (±)-16-D (12%), which was

smoothly converted into the deuterated 15-norsolavetivane(±)-(4-D). The 1H NMR

spectrum was indistinguishable from that of the corresponding cold sample (4), 

while the EI-MS spectrum indicated the D.,-content to be ca. 100%. The compound

(4-D) was submitted to dehydration (Al2O3-Py, 220℃, 8min) into deuterated nor-

solavetivone (±)-(17-D), which, on hydrocyanation (HCN, Et3Al, THF, 0℃, 45

min),14) furnished the cyano ketone (±)-(18-D) as the sole product [39% from (±)-

4-D] (Scheme 2). The compound (18-D) was converted by careful acetalization

[(CH2OH)2, PPTS, benzene, 85℃, 16h] and subsequent reduction (DIBAH, ether, 0

℃, 1h) into formyl ethylene acetal (±)-(19-D) (59%), which was epimerized under

basic conditions (5% KOH-MeOH) to yield an inseparable 2:1 mixture of 10α- ahd

10β-formyl (19-D) compounds. The mixture was reduced with sodium borohydride to

give a mixture of epimeric alcohols, from which the 10βH- (±)-(20-D) and 10αH-

alcohols (±)-(21-D) were isolated in 49 and 28% yields, respectively. The former

(20-D) was finally deacetalized (PPTS, aq acetone, 70℃, 2h) to give (±)-[8,8-

2H

2] isolubimin (±)-(1-D), oil, in 55% yield. The deuterated compound thus

obtained revealed the spectra differing from those of (±)-isolubimin only in the

following: MS, m/z 238 (M+, 20.8%) and 236 (M+ -2, 0%), (D2-content, ca. 100%); 

IR, 2200 and 2110cm-1.15) The synthesis involved 16 steps and the overall yield 

amounted to 2.2% from 10. The feeding experiments with (±)-1-D in healthy and/or

in diseased potato tubers are under investigation.

Scheme 2.
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