Aus dem Pharmakognostischen Institut der Universität Graz.

Zum Nachweis von Analgeticis und Alkaloiden mittels Tetraphenylbornatrium (Kalignost) und Nitrokörpern.

Von

R. Fischer und M. S. Karawja,

(Eingelangt am 13. Juli 1953.)

Zur Identifizierung von Alkaloiden und besonders von Analgeticis liegt bereits eine Anzahl von Arbeiten vor. Davon seien nur einige neuere Mitteilungen genannt: Kofler und Müller¹, Kofler und Lennartz², L. und A. Kofler³, Griebel⁴, Opfer-Schaum⁵, Wegner⁶, Vidic⁷, Brandstätter³, Breinlich⁹. Im allgemeinen unterscheidet man drei Verfahren der Identifizierung: 1. die Herstellung kristallisierter Fällungen oder die Anwendung von Farbreaktionen ohne genauere (detaillierte) Kennzeichnung; 2. die Bestimmung von Schmelzpunkten der mit Fällungsreagenzien erhaltenen Addukte; 3. die Bestimmung des Schmelzpunktes der Reinsubstanz (Alkaloidsalz) und deren Kennzeichnung durch Eutektika und gegebenenfalls durch den Brechungsindex der Schmelze.

In den vorliegenden Arbeiten wurde jeweils nur ein Teil der gebräuchlichen Analgetika berücksichtigt und — bis auf das Verfahren von Kofler³ und Brandstätter³ — die Identifizierung nicht immer mit allen zur Verfügung stehenden Mitteln durchgeführt. Auf die Unsicherheit der Erkennung von Substanzen und Fällungen an ihrer Kristallform allein wurde bereits vor 20 Jahren von uns öfter hingewiesen (Kofler¹¹, Fischer und Moor¹¹, Fischer und Paulus¹²) und betont, daß die erhaltenen Kristalle ihrerseits wieder durch Schmelzpunkt, Eutektika und Brechungsindex der Schmelze gekennzeichnet werden müssen.

Wir haben deshalb die nötigen Daten für die Erkennung von 13 Analgeticis durch die Herstellung kristallisierter Derivate und durch die Bestimmung von deren Schmelzpunkten und eutektischen Temperaturen festgestellt. Als neues Fällungsreagens wurde — neben den schon bekannten Nitrokörpern — das Kalignost (Tetraphenylbornatrium) verwendet. Auf die Ausmittlungs- und Reinigungsverfahren soll hierbei

nicht eingegangen werden. Erwähnt sei in diesem Zusammenhang die Mitteilung von Fischer und Chalupa¹³ und besonders die verdienstvollen Arbeiten von Breinlich⁹ und Vidic⁷. Unsere Untersuchungen zerfallen in drei Teile:

- 1. Umsetzung von 13 Analgeticis und 17 Alkaloiden mittels Kalignost, Bestimmung des Schmelzpunktes der Fällung und der Eutektika mit zwei bis drei Testsubstanzen.
- 2. Umsetzung der Analgetica mit drei Nitrokörpern: Pikrolonsäure, Styphninsäure und Trinitrophloroglucin, wobei die Addukte mit ersterer durch die Eutektika mit zwei Koflerschen Testsubstanzen, die der beiden letzteren durch das Eutektikum mit dem Reagens selbst identifiziert werden.
- 3. Spaltung der Addukte von Analgeticis mit Nitrokörpern in einer Aluminiumoxyd-Säule (*Hesse*¹⁴) und Gewinnung der Reinsubstanz aus dem Eluat. Dieses Verfahren ist bei der Isolierung aus biologischem Material von Bedeutung (*Fischer* und *Chalupa*¹³).

1. Versuche mit Kalignost.

Kalignost bildet mit Kaliumsalzen schwer lösliche Niederschläge und wird zu deren gravimetrischer Bestimmung mit Erfolg verwendet (Wittig¹⁵, Raff und Brotz¹⁶). Über eine gravimetrische Mikrobestimmung des Kaliums berichtet Flaschka¹⁷, über eine mikrotitrimetrische Flaschka, Holasek und Amin¹⁸, über eine titrimetrische Bestimmung von Arzneimitteln mit Kalignost im Mikromaßstab Flaschka, Holasek und Amin¹⁹. Schultz und Mayer²⁰ benützen die Schwerlöslichkeit der Fällungen mit stickstoffhaltigen organischen Verbindungen für die quantitative Bestimmung. Wir beobachteten nun, daß diese Fällungen meist schmelzbar sind und sich zur Identifizierung eignen.

Methodik: Kalignost wird in 3%iger wäßriger, wenn möglich frisch bereiteter, völlig klarer Lösung verwendet. Bei längerem Stehen trübt sie sich infolge Zersetzung. Durch sorgfältige Filtration kann sie wieder verwendbar gemacht werden. Die Alkaloidlösung verwendet man etwa 0,1%ig, hergestellt durch Lösen des Salzes in Wasser oder der Base in Essigsäure; den p_H-Wert hält man bei etwa 3 bis 4, denn in alkalischem Medium tritt meist keine Fällung ein. Sollte der Niederschlag nicht gut kristallisiert sein, so versetzt man entweder mit Aceton bis zur Wiederauflösung und läßt das Aceton an der Luft zum Teil abdunsten, wobei sich meist schöne Kristalle bilden. Oder man erhitzt auf 70° (nicht höher), wobei sich die Fällung löst, und läßt langsam abkühlen. Reiben mit einem Glasstab befördert die Kristallisation. Man wäscht sorgfältig, um das nicht schmelzbare, verkohlende Reagens zu entfernen. Hierauf werden nach kurzem Trocknen der Mikro-Schmelzpunkt und die Eutektika nach Kotler³

bestimmt. Der Vollständigkeit halber sind in der Tabelle 2 (erste Kolonne) auch die Mikroschmelzpunkte von Salzen dieser Basen angegeben. Diese Schmelzpunkte sind infolge von Zersetzungsvorgängen oft unscharf und wechseln von Präparat zu Präparat. Außerdem sind häufig verschiedene Modifikationen anzutreffen (*Brandstätter*⁸).

Für die meisten dieser Salze geben Kofler und Brandstätter⁸ auch die eutektischen Temperaturen an. Soweit dies nicht der Fall ist, sind diese Werte der folgenden Tabelle zu entnehmen:

	Benzil	Acetanilid	Benzanilid	Salophen	Dicyandiamid
Dromoran-HCl	94°	91°			
Permonid-HCl				181°	169°
Ticarda-HCl			105°	$120-121^{\circ}$	

Tabelle 1. Eutektische Temperaturen.

Aus Tabelle 2 ersieht man, daß die scharfen Schmelzpunkte der Tetraphenylborate von Morphinderivaten meist über 150°, die der übrigen Analgetika darunter liegen. Die Basen letzterer sind mit Ausnahme von Cliradon flüssig. Bis auf Polamidon und Heptalgin geben alle Analgetika mit Kalignost kristallisierte Verbindungen, ebenso die angeführten Alkaloide mit Ausnahme von Emetin, Eserin, Pilocarpin, Papaverin und Aconitin. Letztere Fällung schmilzt recht scharf und ermöglicht mit ihren eutektischen Temperaturen eine gute Kennzeichnung. Infolge der Ähnlichkeit mancher Substanzen liegen bei diesen auch die Schmelzpunkte und Eutektika der Tetraphenylborate einander ziemlich nahe, wenn auch die Reproduzierbarkeit der Schmelzpunkte recht gut ist. Dies gilt für die Substanzpaare Dromoran und Morphin, Dicodid und Eucodal sowie Eucodal und Dionin. Bei diesen drei Paaren ergeben die Addukte mit Nitrokörpern günstigere Resultate.

Zum Ticarda sei erwähnt, daß hierbei lediglich die hustenwirksame Komponente Diphenyldimethylamidohexanon, die wohl nicht als Analgeticum anzusprechen ist, geprüft wurde, und zwar nur mit Rücksicht auf ihre Ähnlichkeit mit Polamidon.

Das Eutektikum zwischen Scopolamin-Hydrobromid und Pilocarpin-Hydrochlorid wurde mit 172° gefunden.

2. Kennzeichnung mit Hilfe von Nitrokörpern.

Von den Nitrokörpern erwiesen sich Pikrolonsäure, Styphninsäure und Trinitrophloroglucin als die geeignetsten. Die Fällung (auf dem Objektträger oder in der Proberöhre) und das Waschen und Trocknen erfolgte in der üblichen Weise (Kofler und Müller¹). Bei den Pikrolonaten wurden die von Kofler³ empfohlenen Testsubstanzen zur Bestimmung der eutek-

Tabelle 2. Tetraphenylborate.

	1-2	7.6				ы	eutekt. Temp. mit	o. mit
Mikr	des	des Salzes	Analgemenn bzw. Alkaloid	Kristallform	₽p.° C	Acet- anilid	Phen- acetin	Salo- phen
ochir	*006 #86		Mambin	a Carolina Bina Daireanna	140 174	601	199	14 14
n.		0000	imid rout	iegennamge rusinen		707	7 5	146
Ac	200-210	$(180 - 230^{\circ})$	Heroin	kleine Frismen		707	120	140
ta	295 - 307		Permonid	feine kurze Nadeln	158 - 160	66	113	148
19	145 - 150	(149-156*)	Dionin	kleine Prismen	157	108	125	152 - 153
53/	115 - 118		Dromoran	feine Prismen und Nadeln	173—175	101	118	149
4.	250 - 260	(235-260*)	Eucodal	feinkristallines Pulver	155	104	123	147
	163 - 173	(175 - 185 *)	Dicodid	kleine körnige Kristalle	150	100	123	147
	230 - 233		Acedicon	Nadeln und Prismen	170	104	124	152
	186 - 188	(188 - 191 **)	Dolantin	kleine Prismen und Spieße	139 - 140	81	109	133
	193-200	(200-206**)	Hö 10720 Cliradon	kleine Prismen und Schuppen	150 - 151	84	105	137
	228 232**		Polamidon Algolysin	feine Körner	98	62	28	
	1	(198-208**)	Hö 10600 Heptalgin	feine Körner	9193	69	85	
	171 - 173,5		Ticarda	kurze Nadeln	144	102	121	139
	141 - 143		Prostigmin sulf.	Prismen und kleine Nadeln	215-216	111	130	174
	280 - 310	(260 - 305*)	Strychnin nitr.	feinkristallines Pulver	171—175	109	125	157
	283 - 290 *		Tropacocain-HCl	Prismen	156—157	103	122	148
	181 - 183		Eucatropin-HCl	Nadeln und Spieße	155-156	90	108	140
	156*		Novocain-HCl	feinkristallines Pulver	147—151	97	115	143
	170-178*		Brucin Base	kristalline Schuppen u. kl. Prismen	144—145	94	113	
	190 - 193 *		Atropin sulf.	Schuppen und kleine Prismen	140	100	116	
	104 - 107*		Hyoscyamin Base	Schuppen und Prismen	137—139	86	118	
	187 - 188		Aconitin nitr.	amorphes Pulver	135	72	94	
	205 - 215 *		Emetin-HCl	amorphes Pulver	114-115	70	91	
	179*		Physostigmin salicyl.	amorphes Pulver	106	89	85	
	181 - 184*		Euphtalmin HCl	feinkristallines Pulver	94	22	77	
	189 - 191 *		Cocain HCl	amorphes Pulver	86—96	20	85	
2	190 - 197 *		Scopolamin HBr	feinkristallines Pulver	- 1	67	87	
5	200*		Pilocarpin HCl	amorphes Pulver	81—82	65	80	
	215 - 220		Papaverin-HCl	amorphes Pulver	· 1	63	79	
	220	-	Ephedrin-HCl	kleinste Kristalle	80—83	50	6989	
	+	9 77 119	O			,		

tischen Temperatur verwendet, da sich hier das von Opfer-Schaum²¹ empfohlene Eutektikum zwischen Fällung und Reagens nicht bewährt hat. Bei den Addukten der restlichen zwei Reagenzien wurde die eutektische Temperatur zwischen diesen und dem Addukt benützt. Zum Teil wurden befriedigende Ergebnisse erhalten.

Mit Rücksicht auf die Übersichtlichkeit der Tabelle 3 seien im folgenden die Kristallformen und die bei und vor dem Schmelzpunkt zu beobachtenden Veränderungen beschrieben. Es bedeuten hierbei: P = Pikrolonat, St = Styphnat, T = Trinitrophloroglucinat.

Morphin P: lange Nadeln und Spieße, relativ scharfer Schmelzpunkt; St: erst nach längerem Stehen kräftige Nadeln, häufig amorph.

Heroin P: kräftige Nadeln, auch vereinzelt Plättchen, die sich bei zirka 180° in feine Nadeln umwandeln, bei 205° Tropfen; St: große plattenförmige Kristalle. Braunfärbung der Schmelze.

Permonid P: sternförmige, dicke Spieße und Nadeln; St: Nadeln und spießförmige Kristalle; T: zarte lange Nadeln, Schmelzen unter Zersetzung.

Dionin P: Nadeln, scharfer Schmelzpunkt; St: prismatische Kristalle in Büscheln, Tropfen bei 215°, Schmelzen unter Braunfärbung; T: prismatische Kristalle und Nadeln, Schmelzen unter Zersetzung.

Dromoran P: orangefarbene Körner; St: prismatische Kristalle, Gelbbraunfärbung der Schmelze infolge Zersetzung.

Eucodal P: rechteckige, prismatische Kristalle, gegen 240° bräunliche Tropfen, Schmelzen unter Zersetzung; St: lange, dicke Spieße, um 200° gelbe Tropfen, Schmelzen unter Zersetzung.

Dicodid P: Nadeln und Prismen, Tropfen um 230°, Schmelzbeginn 235° unter Zersetzung; St: Aggregate von Nadeln, ab 200° beginnende Braunfärbung infolge Zersetzung; T: Nadelbüschel, bei 220° beginnende Braunfärbung, Schmelzpunkt relativ scharf, hernach Verkohlung.

Acedicon P: Nadeln und Säulen, über 210° braune Tropfen, Schmelzen unter Zersetzung; St: Aggregate feiner Nadeln; T: lange Nadeln und Säulen.

Dolantin P: lange, dünne Nadeln, Schmelzpunkt unscharf; St: längliche Prismen, schmilzt scharf nach Erweichen bei 183°; T: fiederig verzweigte Kristalle, Tropfen bei 172°, scharfer Schmelzpunkt.

Hö 10720 (Cliradon) P: Büschel kurzer, dünner Nadeln, scharfer Schmelzpunkt; St: kleine Nadeln, scharfer Schmelzpunkt; T: große Prismen, Schmelzpunkt scharf.

Polamidon (Algolysin) P: Aggregate kleiner Nadeln, erste Tropfen bei 114°; St: kurze Nadeln, Erweichen bei 150°; T: lange Nadeln*.

^{*} W. $Hoffmann^{22}$ identifiziert das Polamidon u. a. mittels des Pikrats und Rhodanids.

Tabelle 3.

		Pikrolonate		Styphnate	nate	Trinitroresorzinate	orzinate
Analgetica Hydrochloride	Sohwolanmit	Eute]	Eutektika mit	Schmelz-	Eutekt. mit	Schmelz-	Eutektikum mit Trinitro-
	Schinetapaire	Benzanilid	Salophen	punkt	säure	punkt	resorcin
Morphin	190—191*	132	155	176—178	125		
Heroin**	205-215	171	170	209—216	135	196-200	125
Permonid	177181	126	151	123 - 126	106	200 - 206	132
	-		Phenacetin				
Dionin	143145	111	102	218-225	140	170 - 176	140
Dromoran	144-146	109	66	198 - 205	134		
		Salophen	Dicyandiamid				
Eucodal	245255	$1\overline{83}$	190	208-212	135		
Dicodid	235-250	180	190	229	$150~\mathrm{tr}^+$	226	141
Acedicon	228-233	170	176	188 - 200	125	195 - 200	127
			Benzanilid				
Dolantin	182-190	160	134	183 - 185	132	190	120
			Dicyandiamid	•			
Cliradon	232	174 tr+	184	177—180	129	182 - 187	121
		Phenacetin	Benzanilid				
Polamidon (Algolysin)	156—160	113	121	150 - 153	111 tr+	178 - 183	120
		Salophen	Dicyandiamid				
Heptalgin	190—195	156	168	152 - 155	115	162 - 164	112
			Benzanilid				
Ticarda	187—189	156	136	124	96	164 - 167	111 tr^+
Scopolamin HBr	174—178*	154	141	amorph		amorph	
Pilocarpin	179 (170—180*)	141	133	$179-\hat{1}82*$	133	143 - 145	103
* Kofter und Müller¹. ** Kofter und Müller¹ fanden bei den Pikrolt ** Diese Diskrepanz konnte nicht geklärt werden, † Träges Eutektikum.	$M\ddot{u}ller^1$. $M\ddot{u}ller^1$ fanden bei den Pikrolonaten und Styphnaten des Heroins wesentlich niedrigere Schmelzpunkte. konnte nicht geklärt werden. ektikum.	ten und Styr	phnaten des Her	oins wesent	lich niedri	igere Schme	slzpunkte.
r							

Hö 10600 (Heptalgin) P: Aggregate kleinster, prismatischer Kristalle, vereinzelt Tropfen bei 180°; St: Nadeln und Spieße; T: Aggregate von Nadeln und Säulen, Schmelzpunkt scharf.

Ticarda P: dünne Prismen, Tropfen bei 180°, Schmelzpunkt relativ scharf; St: kurze, abgeschrägte Prismen, scharfer Schmelzpunkt; T: flache Kristalle.

Pilocarpin P: kubische Kristalle und Prismen, Schmelzpunkt scharf bei 179°, Kofler und Müller finden meist 170 bis 180°; St: lange, dicke Nadeln, schmilzt unter Gasbildung; T: prismatische Kristalle, schmilzt unter Gasbildung.

Scopolamin P: nach langem Stehen Sphärokristalle, Schmelzpunkt scharf, übereinstimmend mit Kofler und Müller 1 ; St: ölige Tropfen, Kofler und Müller erzielten Sphärokristalle.

Die beiden letzten Alkaloide fanden hier Aufnahme, teils da sie in Gemischen mit Analgeticis vorkommen, teils weil sie zuweilen miteinander verwechselt werden.

Mit Hexanitrodiphenylamin geben folgende Analgetica amorphe Fällungen: Morphin (Fp = 138°), Heroin (123°), Permonid (11°), Dionin (119°), Eucodal (127°), Dicodid (129°), Acedicon (120°), Heptalgin (62°). Der Wert dieser Fällungen im Hinblick auf die Identifizierung ist jedoch gering.

3. Spaltung der Addukte.

Läßt man eine Lösung der mit Nitrokörpern erhaltenen Addukte (in Chloroform oder in Chloroform mit 20% Aethanol, in einzelnen Fällen in einem Gemisch von zwei Teilen Chloroform und einem Teil Isopropanol) über eine Aluminiumoxydsäule (Merck, stand. n. Brockmann) laufen, so wird das Addukt gespalten, der Nitrokörper haftet fest als gelbe Zone im oberen Teil der Säule und im Eluat findet sich die reine Base. Man muß natürlich darauf achten, daß die Aluminiumoxydsäule (7 mm ø und 3 cm Länge) unten in einer Länge von zirka 1 cm weiß bleibt. Auf diese Weise wird bei der Untersuchung biologischen Materials eine zusätzliche Reinigung der Base ermöglicht. Fischer und Chalupa¹³ haben darauf hingewiesen, daß die Pikrolonsäure für solche Zwecke besonders gereinigt werden muß, da sie Begleitstoffe enthält, die mit den in Betracht kommenden Lösungsmitteln eluiert werden und das Eluat verunreinigen.

Wir stellten Addukte der Analgetica mit Nitrokörpern dar, lösten 5 mg davon in den erwähnten Lösungsmitteln — s. die Tabelle 4 — und ließen diese Lösungen über die Aluminiumoxydsäule laufen. Nach gründlichem Durchwaschen wurde der Rückstand des Eluates gravimetrisch bestimmt. Er war immer rein weiß. Aus der Molekulargewichts-Relation wurde die aus 5 mg Addukt zu erwartende Menge der Base

berechnet. Wie man aus den Angaben der Tabelle 4 entnehmen kann, stimmen die Werte befriedigend überein, so daß von quantitativer Ausbeute gesprochen werden kann.

Tabelle 4. Spaltung von Addukten der Analgetica mit Nitrokörpern.

* •		mg	Base
5 mg Addukt	gelöst in 5 ml	ge- funden	be- rechnet
Heroin-Pikrolonat	Chloroform	3,00	3,00
Morphin-Pikrolonat	Chloroform-Isopropanol	2,70	2,70
Permonid-Pikrolonat	$\operatorname{Chloroform}$	2,50	2,50
Dionin-Styphnat	Chloroform	3,00	0,00
Dromoran-Styphnat	${f Chloroform}$	2,48	2,50
Eucodal-Pikrolonat	Chloroform-Aethanol	2,90	3,00
Dicodid-Styphnat	Chloroform-Isopropanol	2,65	2,70
Acedicon-Styphnat	Chloroform	2,90	3,20
Dolantin-Trinitrophloro-			
glucinat	${f Chloroform}$	2,30	2,40
Cliradon-Pikrolonat	Chloroform-Isopropanol	2,35	2,40
Polamidon-Trinitrophloro-			
glucinat	${ m Chloroform}$	2,60	2,70
Heptalgin-Pikrolonat	${f Chloroform}$	2,80	2,90
Ticarda-Trinitrophloro-			
glucinat	${ m Chloroform}$	2,60	2,65

Das Nachwaschen der Aluminiumoxyd-Säule erfolgt mit 15 ml Lösungsmittel.

Für die freundliche Überlassung von Reinsubstanzen sei an dieser Stelle folgenden Firmen verbindlichst gedankt: Heyl & Co., Hildesheim, für das Kalignost; Farbwerke Höchst für Hö 10720, Hö 10600 und Ticarda; Hoffmann-La Roche, Basel, für Dromoran und Permonid; Sanabo, Wien, für Algolysin (Polamidon).

Zusammenfassung.

Zur einwandfreien Identifizierung von 13 Analgeticis und 17 Alkaloiden wurden von den Fällungen mit Tetraphenylbornatrium die Mikroschmelzpunkte und mehrere eutektische Temperaturen bestimmt. Außerdem wurden die Analgetica noch durch die Schmelzpunkte und eutektischen Temperaturen der Addukte mit Pikrolonsäure, Styphninsäure und Trinitrophloroglucin gekennzeichnet. Für jede Substanz stehen somit elf bzw. vier Zahlenwerte zur Verfügung. Schließlich wurde die Spaltung der Addukte mit Nitrokörpern auf einer Aluminiumoxydsäule quantitativ verfolgt.

Summary.

In order to identify with certainty 13 analgesics and 17 alkaloids, the micro melting points and several eutectic temperatures were determined of the precipitates with tetraphenyl boron sodium. Furthermore, the analgesics were characterized also by the melting points and eutectic temperatures of the addition compounds with picrolonic acid, styphnic acid, and trinitrophloroglucin. Accordingly, 11 respectively 4 values are available for each substance. Finally, the fission of the adducts with nitro compounds on an aluminum oxide column was followed quantitatively.

Résumé.

Pour une identification sure de 13 analgésiques et de 17 alcaloides, on détermine les micro-points de fusion et plusieurs des températures d'eutexie entre les précipités obtenus avec le tétraphénylbore-sodium. De plus, on caractérise les analgésiques par leurs points de fusion et par les températures d'eutexie des produits d'addition avec l'acide picrolonique, l'acide styphnique et le trinitrophloroglucinol. Pour chaque substance, on obtient par conséquent, onze respectivement quatre valeurs. Finalement, on effectue la séparation quantitative des produits d'addition avec les dérivés nitrés sur une colonne d'alumine.

Literatur.

- ¹ L. Kofler und F. A. Müller, Mikrochem. 22, 43 (1937).
- ² L. Kofler und H. J. Lennartz, Mikrochem. 33, 70 (1947).
- ³ L. und A. Kofler, Mikromethoden zur Kennzeichnung organischer Stoffe und Stoffgemische. Innsbruck: Wagner. 1948.
 - ⁴ C. Griebel, Pharmaz. Ztg. 85, 757 (1949).
 - ⁵ R. Opfer-Schaum, Österr. Apoth.-Ztg. 6, 543 (1952).
 - ⁶ E. Wegner, Dtsch. Apoth.-Ztg. 91, 109 (1951).
- 7 E. Vidic, Arzneimittelforsch. 3, 34 (1953). Arch. exper. Pathol. Pharmakol. 212, 339 (1951).
 - ⁸ M. Brandstätter, Arzneimittelforsch. 3, 33 (1953).
 - ⁹ J. Breinlich, Arzneimittelforsch. 3, 93 (1953).
 - ¹⁰ L. und A. Kofler, Arch. Pharmaz. 272, 537 (1934); 270, 293 (1932).
 - ¹¹ R. Fischer und A. Moor, Mikrochem. 15, 74 (1934).
 - ¹² R. Fischer und W. Paulus, Arch. Pharmaz. 273, 83 (1935).
 - ¹⁸ R. Fischer und L. Chalupa, Mikrochem. **34**, 257 (1949).
- ¹⁴ G. Hesse, Adsorptionsmethoden im chemischen Laboratorium. Berlin: W. de Gruyter & Co. 1943.
 - ¹⁵ G. Wittig, Ann. Chem. **563**, 118, 126 (1949).
 - ¹⁶ P. Raff und W. Brotz, Z. analyt. Chem. 133, 241 (1951).
 - ¹⁷ H. Flaschka, Z. analyt. Chem. 136, 2, 99 (1952).
- ¹⁸ H. Flaschka, A. Holasek und A. Amin, Z. analyt. Chem. **138**, 161, 332 (1953).
 - 19 H. Flaschka, A. Holasek und A. Amin, Arzneimittelforsch. im Druck.
 - ²⁰ O. E. Schultz und G. Mayer, Dtsch. Apoth.-Ztg. 92, 358 (1952).
 - ²¹ R. Opfer-Schaum, Mikrochem. 31, 324 (1944); 32, 148 (1944).
 - ²² W. Hoffmann, Arzneimittelforsch. 3, 364 (1953).