On the Biosynthesis of Ethylene: Further Evidence for Stepwise Enzymatic Cyclopropane Ring Cleavage

Jack E. Baldwin,** Robert M. Adlington,* Gilles A. Lajoie,* Christopher Lowe,* Pete D. Baird,^b and Keith Prout*^b

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

^b Chemical Crystallography Laboratory, University of Oxford, Parks Road, Oxford OX1 3PD, U.K.

The conversion of a series of 2,3-dimethylated 1-aminocyclopropanecarboxylates by apple tissues into mixtures of *cis*- and *trans*-butenes is reported; the results are in accord with a stepwise enzymatic mechanism of cyclopropane ring opening.

Recently we reported that the conversion of deuterated monoalkylated 1-aminocyclopropanecarboxylates(ACCs) by apple tissue into alkenes occurs with a net stereochemical bias.¹ These results were consistent with the hypothesis that the biosynthesis of ethylene from ACC occurs by a stepwise mechanism in an active site whose intrinsic topology determines the stereochemical bias observed from substrates other than ACC.² In order to probe further the specificity of this enzyme, we have prepared a series of 2,3-dimethylated ACCs and challenged them with fresh apple tissue. In these cases the sterically more demanding methyl group replaces the deuterium used in the previous study.¹

The first of these substrates, (1R,2S,3R)-(1)[†] {Scheme 1; ¹H n.m.r., δ_{H} [‡] (D₂O, 300 MHz) 0.91–0.94 (6H, m, Me), 1.50–1.56 (2H, m, CH); *m/z* [NH₃ direct chemical ionisation (d.c.i.)] 130 (*M*H⁺, 100%)} in which the methyl groups are *cisoid* to the amino function gave good conversion (4%) with apple tissues§ into a 5:1 mixture of *cis::trans*-butenes. The second substrate, (1R,2R,3S)-(2) [Scheme 1; ¹H n.m.r., δ_{H} [‡] (D₂O, 300 MHz) 1.05—1.10 (6H, m, Me), 1.40—1.50 (2H, m, CH); *m/z* (NH₃ d.c.i.) 130 (*M*H⁺, 100%)] was found to be a

Table 1. Conversion of 2,3-dimethylated ACCs (1), (2), (3), and (5) into *cis-/trans*-butenes by apple tissues.

	Pr cis-: tro	oduct	
Substrate	G.c.	¹ HN.m.r. ^b	Conversion (%) ^a
(1)	5:1	5:1	4
(2)	_	-	< 0.02
(\pm) -(3)	4:1	4:1	0.4
(-)-(5)	4:1	4:1	0.4

^a Calibrated against a *cis*-butene standard by g.c. analysis. ^b N.m.r. ratios were determined by integration of the olefinic and methyl resonances.

§ Feeding experiments to apple tissues were performed as previously described, see ref. 2.

[†] The numbering systems adopted are indicated on structures.

Scheme 1. Reagents: i, $(MeS)_2$, SO_2Cl_2 ; ii, $NaCH(CO_2Me)_2$, MeOH, heat; iii, KOH, MeOH, then H_3O^+ ; iv, N_2H_4 · H_2O , 80 °C, 3 days; v, $NaNO_2$ (1.5 equiv.), HCl, 0 °C, 1 h; vi, toluene, 90 °C, 1 h; vii, 6 M HCl, 60 °C, 18 h; viii, Dowex 50W-X8 (H) ion exchange; ix, $NEtPri_2$ (1.2 equiv.), EtOCOCI (1.5 equiv.), tetrahydrofuran (THF), -10 °C, 1 h; x, NaN_3 , (3 equiv.) in water (5 ml), 0 °C, 45 min; xi, toluene, 85 °C, 1 h; xii, 6 M HCl, 100 °C, 6 h; xiii, Dowex 50W-X8 (H) ion exchange.

Scheme 2. Reagents: i, $(MeS)_2$, SO_2Cl_2 ; ii, $NaCH(CO_2Me)_2$, MeOH, heat; iii, KOH, MeOH, then H_3O^+ ; iv, $(PhO)_2PON_3$, THF, 15 °C, 3 h; v, toluene, 90 °C, 1 h; vi, 6 M HCl, 100 °C, 6 h; vii, Dowex 50W-X8 (H) ion exchange; viii, MeOH, HCl; ix, ethyl 1,2-dihydro-2-ethoxy-1-quinoline carboxylate (EEDQ) (2 equiv.), (R)-(-)-2-hydroxy-2-phenylacetic acid, NEt₃ (1 equiv.), CH_2Cl_2 , 18 h, 65%; x, recrystallization (EtOAc-petroleum); xi, 6 M HCl, 100 °C, 8 h; xii, Dowex 50W-X8 (H) ion exchange.

very poor substrate with apple tissues (yield <0.02%). The racemate (3) [Scheme 2; ¹H n.m.r., δ_{H} [‡] (D₂O, 300 MHz) 0.98—1.09 (1H, m, CH), 1.025 (6H, 2 × d, J 8 Hz, Me), 1.39—1.48 (1H, m, CH); *m*/*z* (d.c.i.) 130 (*M*H⁺, 100%)] gave conversion (0.4%) into a 4 : 1 mixture of *cis-:trans*-butenes, for which the (1*R*,2*R*,3*R*)-(5) enantiomer¶ {[α]_D²⁰ -49° (*c* 0.225, H₂O)} was found to be the only significant biological precursor to butene production (Table 1).

In a separate study the chemical oxidation of substrates (1) and (2) with ferrate (FeO₄²⁻) ions was examined.⁶ In contrast to the biological system, both substrates were efficiently converted into a 1:2 mixture of *cis*- and *trans*-butenes.

The biological results obtained in respect of the relative effectiveness of (1) and (5) but not (2) are consistent with the previous study of mono-methylated ACCs,¹ in which all isomers except the (1S,2S)-isomer (6) were effective substrates, *i.e.* all isomers bearing an alkyl substituent in the same absolute stereochemical disposition as in (6) are not effective substrates for the apple enzyme. The predominance of the

¶ Resolution of the enantiomers of (3) followed from coupling to the diastereoisomeric (*R*)-mandelate derivatives (4) [$\delta_{\rm H}$ (partial) (300 MHz, CDCl₃) 3.61, 3.64 (2 × 3H, 2 × s, 2 × CO₂Me)] from which (4a) was separated by recrystallization (ethyl acetate–petroleum) {m.p. 142–144 °C; *m/z* (NH₃ d.c.i.) 367 (MNH₄+, 60%), 350 (MH⁺, 100%); $\delta_{\rm H}$ (partial) (300 MHz, CDCl₃) 3.6 (3H, s) 4; [α]_D²⁰ – 66° (c 0.35, CHCl₃) } and hydrolysed to (5) (Scheme 2).⁵ The absolute configuration of (4a) follows from *X*-ray crystallographic studies (Figure 1).||

|| Crystal data for (4a): C₁₈H₂₃O₆N₁; M = 349.4, monoclinic, space group P2₁, a = 19.643(2), b = 9.439(2), c = 10.419(2) Å, $\beta = 94.02(2)^\circ$, U = 1927.1 Å³, Z = 4, $D_c = 1.20$ g cm⁻³. 4202 Independent reflections ($1 < 2\theta < 150^\circ$) gave 2578 observed reflections [$I \ge 3\sigma(I)$]. Data were collected on an Enraf-Nonius CAD4 diffractometer using graphite monochromated Cu- K_{α} radiation ($\lambda = 1.5418$ Å). The structure was solved using MITHRIL.⁷ All refinement was carried out on a VAX11/750 computer using CRYSTALS.⁸ The final *R* value is 0.061, R_w 0.069. †† Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

^{††} The two molecules in the asymmetric unit are related by a pseudo-operator which could not be accommodated by a change of space group. The two molecules differ mainly in the orientation of the phenyl group which appears to be able to librate fairly freely.

Scheme 4

Figure 1. Molecular structure of (4a) showing the atom numbering scheme.

thermodynamically less stable *cis*-butene from both (1) and (5) is more striking than the previous results with deuterated mono-methylated ACCs¹ since in this case the stereochemical bias afforded by the active site is clearly contra-thermodynamic. This result may arise from a common radical intermediate whose conformation, prior to olefin formation, is determined by the active site topology, Scheme 3, as was previously suggested¹ for the (1*R*,2*S*)-(7) and (1*R*,2*R*)-(8) mono-methylated ACCs, Scheme 4.

In conclusion, the results reported here provide further support for the view that ethylene synthetase operates *via* a stepwise and homolytic mechanism in which active site topology directs the stereochemical course of the process.

Received, 28th January 1988; Com. 8/00310F

References

- 1 J. E. Baldwin, R. M. Adlington, G. A. Lajoie, and B. J. Rawlings, J. Chem. Soc., Chem. Commun., 1985, 1496.
- 2 R. M. Adlington, J. E. Baldwin, and B. J. Rawlings, J. Chem. Soc., Chem. Commun., 1983, 290.
- 3 Prepared by analogous methods to the literature procedure, see J. Ohishi, *Synthesis*, 1980, 690.
- 4 Prepared by analogous methods to the literature procedures, J. E. Baldwin, R. M. Adlington, and B. J. Rawlings, *Tetrahedron Lett.*, 1985, 481.
- 5 Prepared by analogous methods to the literature procedures, J. E. Baldwin, R. M. Adlington, B. J. Rawlings, and R. H. Jones, *Tetrahedron Lett.*, 1985, 485.
- 6 J. E. Baldwin, D. A. Jackson, R. M. Adlington, and B. J. Rawlings, J. Chem. Soc., Chem. Commun., 1985, 206.
- 7 G. J. Gilmore, 'MITHRIL, A computer program for the automatic solution of crystal structures from X-ray data,' Department of Chemistry, University of Glasgow, 1983.
- 8 D. J. Watkin, J. R. Carruthers, and P. W. Betteridge, 'CRYSTALS User Guide,' Chemical Crystallography Laboratory, Oxford, 1985.

777