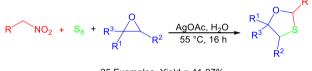
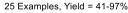
ORIGINAL PAPER


Catalytic multicomponent reaction between nitroalkanes, elemental sulfur, and oxiranes


Mehdi Khalaj¹ · Mahboubeh Taherkhani² · Fereshteh Naderi³ · Seyed Mahmoud Mousavi-Safavi¹

Received: 28 July 2017/Accepted: 2 October 2017 © Springer-Verlag GmbH Austria 2017

Abstract An efficient multicomponent reaction of nitroalkanes and elemental sulfur with oxiranes was developed with the aid of silver salt. This reaction procedure provides a novel and practical strategy for the rapid assembly of 1,3-oxathiolane skeletons. The reaction exhibited remarkable functional group tolerability and regio-selectivity so that only one regio-isomer formed during the ring opening of oxiranes.

Graphical abstract

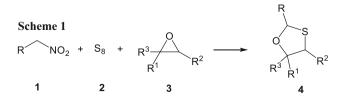
Keywords Oxirane · Cyclization · Elemental sulfur · Nitroalkane · Catalytic multicomponent reaction

Electronic supplementary material The online version of this article (doi:10.1007/s00706-017-2067-9) contains supplementary material, which is available to authorized users.

Mehdi Khalaj khalaj_mehdi@yahoo.com

- ¹ Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
- ² Young Researchers and Elite Club, Takestan Branch, Islamic Azad University, Takestan, Iran
- ³ Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Introduction

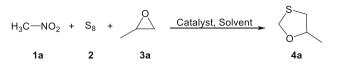

Heterocyclic compounds are core skeletons of most pharmaceutical agents and bioactive compounds [1-4]. The addition and/or elimination of bonds to active carbon are the most privileged route for the synthesis of heterocyclic compounds [5-7]. The achievement of forming heterocyclic compounds in a multicomponent reaction has opened the door for expedient and diverse syntheses of these highly valuable building-blocks in only one single step [8-10]. Among the various types of heterocycles, organosulfur compounds are important intermediates for the synthesis of various biologically active molecules. 1,3-Oxathiolane derivatives have been shown to possess radioprotective activity [11]. Over the years, the increasing request for oxathiolanes resulted in the development of synthetic strategy for the syntheses of the structures in high purity and on large scale [12–14]. As result of promising biological activities, some of oxathiolane nucleosides have been licensed for the treatment of human immunodeficiency viruses (HIV-1 and HIV-2) and hepatitis B virus (HBV) infections [15, 16]. In addition, more studies are being conducted to evaluate antiretroviral activity of a number of other oxathiolane nucleosides [17].

A variety of oxathiolanes and oxathianes have been formed starting from epoxides and heterocomulenes [17–25]. However, a relatively limited number of reports on the reaction of oxiranes with elemental sulfur have appeared [26, 27]. Most of the transformation described above produced 1,3-oxathiolanes which contain C–N or C–S double bond at C-2 position.

Organic C–H acids typically have an adjacent electronwithdrawing group to polarize the C–H bond for site-selective addition and enhanced reactivity. In continuation of our report in catalysis [28–31], we examine the efficiency of nitroalkane, elemental sulfur, and oxiranes in preparation of 1,3-oxathiolane derivatives (Scheme 1).

Results and discussion

Preliminary attempt to promote the reaction between nitromethane (1), elemental sulfur (2), and methyl oxirane (3a) in the presence of (i-Pr)₂MeN at 55 °C for the synthesis of 1,3-oxathiolane skeleton was unsuccessful. Therefore, the reaction was conducted with tetrabutylphosphonium acetate (TBPA) for 16 h and 4-methyl-1,3-oxathiolane (4a) was obtained in traces amount together with 1-[(nitromethyl)thio]propan-2-ol (5) in 41% yield (Table 1, entry 2). It should be noted that tetrabutylammonium acetate (TBAA) completely inhibited the reaction (Table 1, entry 3). Based on this finding, we examined the reaction under various conditions to improve the yield of 4a (Table 1). As anticipated, Lewis acidity of the metalcation should facilitate the ring opening and subsequent nucleophilic substitution on the carbon atom bound to the nitro group. As such, the reaction was conducted with a range of Lewis acids and the results are summarized in Table 1. While in most reactions trace amounts of the targeted 1,3-oxathiolane 4a were detected (Table 1, entries 4-8), the use of Ag_2O led to a promising 51% yield (Table 1, entry 9). To our delight, the yield of 4a increased to 96% yield when the reaction was performed in the presence of AgOAc (Table 1, entry 10). Other silver salts also promoted the reaction; however, the yields were comparatively lower (entries 11-13). Such substantial variations on the yield using AgOAc as the promoter could traduce the positive role displayed by releasing AcOH in the mild entries 10 vs. entry 11. To our surprise, the yield completely suppressed using AgNO₃ and AgBF₄ as the promoter (Table 1, entries 14 and 15). The results clearly exhibit the sensitivity of the reaction to the nature of both the metallic cation and the counter-ion. Attempts to use alternative solvents such as THF, DMF, toluene, and others proved less efficient affording 4a in lower yields (Table 1, entries 15-20). It is worth mentioning that the desired product obtained in 93% yield when deionized water was used as the solvent using 1.5 mmol of nitromethane (1a) (Table 1, entry 21). Finally, a sulfur loading screen indicated that the yield remained almost unchanged by



decreasing the amount of sulfur to 0.3 mmol; however, the yield was observed to decrease as the amount reduced further (Table 1, entries 22 and 23). There was no progress in the reaction after hours at room temperature (Table 1, entry 24).

Subsequently, we explored the scope of the cyclization reaction with oxirane derivatives 3 (Table 2). With the oxirane substituted by methyl group 3a, a yield of 90% of the product was obtained (Table 2, entry 1). Other alkyl oxiranes could also be employed as facile substrates that provided the corresponding 1,3-oxathiolanes in good yields (Table 2, entries 2 and 3). Ethyl-substituted oxirane 3b improved the reactivity of the reaction; in contrast, a modest decrease in yield occurred using 2-propyloxirane (3c) probably due to the steric hindrance for the incoming nucleophile. Sterically hindered oxirane 3d proceeded in moderate success affording the corresponding products 4d in 51% yield (Table 2, entry 4). When oxiranes containing oxymethyl motif were subjected to the reaction conditions, the desired heterocyclic products 4e, 4f, and 4g were isolated in good yields (Table 2, entries 5-7). We found that ring opening of gem-di-substituted oxiranes 3h and 3i proceeded in excellent conversions (Table 2, entries 8 and 9). Electronically distinct group on the oxirane ring, such as chloride is also well tolerated (Table 2, entry 10). Higher yield was obtained for tert-butyl-substituted oxirane **3k** compared to their common alkyl analogues (Table 2, entry 11). Oxirane with allyl motif 3l gave the corresponding product in acceptable yield (Table 2, entry 12). The presence of OH– and CF_{3} – in oxirane structure **3m** lowered the yield of its corresponding 1,3-oxathiolane (Table 2, entry 13). Taking phenyl-substituted oxiranes as an example (3n, 3o, 3p, and 3q), the products yield decreased with increased electron density of the aryl moiety (Table 2, entries 14–17). Particularly noteworthy was that the reactions conducted with phenyl- and electron-rich arene-substituted oxirane formed the benzylic attacked product, exclusively. A modest increase in yield occurred when stilbene oxide (3r) was used as the substrate (Table 2, entry 18). Phenyl(3-phenyloxiran-2-yl)methanone (3s) was also transferred to the corresponding 1,3oxathiolane in good yield (Table 2, entry 19). The fused bicyclic 1,3-oxathiolanes were also achieved in acceptable yields (Table 2, entries 20-22). Unfortunately, cyclopentene and cyclooctene oxides (3w and 3x) did not undergo the desired cyclization reaction which is likely due to steric as well as electronic factors (Table 2, entries 23 and 24).

Finally, we extended this reaction to other types of nitroalkanes (Table 3). Under the similar conditions, the readily available nitroethane (1b) is converted to the desired 1,3-oxathiolane structure 4w in 61% yield (Table 3, entry 1). Additionally, nitropropane (1c) also

Table 1 Optimization of reaction conditions

Entry	Catalyst	Solvent	Yield of 4a/%
1	(<i>i</i> -Pr) ₂ MeN	MeNO ₂	_
2	TBPA	MeNO ₂	Traces ^a
3	TBAA	MeNO ₂	_
4	LiOTf	MeNO ₂	17
5	LiClO ₄	MeNO ₂	11
6	BF ₃ .Et ₂ O	MeNO ₂	_
7	Sc(OTf) ₃	MeNO ₂	Traces
8	ZnCl ₂	MeNO ₂	-
9	Ag ₂ O	MeNO ₂	51
10	AgOAc	MeNO ₂	96
11	AgOTf	MeNO ₂	78
12	AgI	MeNO ₂	34
13	AgCl	MeNO ₂	26
14	AgNO ₃	MeNO ₂	17
15	AgBF4	MeNO ₂	12
16	AgOAc	THF	38
17	AgOAc	DMF	40
18	AgOAc	Toluene	71
19	AgOAc	CH_2Cl_2	87
20	AgOAc	MeCN	38
21	AgOAc	H ₂ O	93 ^b
22	AgOAc	H ₂ O	90 ^{b,c}
23	AgOAc	H ₂ O	67 ^{b,d}
24	AgOAc	H ₂ O	_ ^e

For all entries except stated otherwise: **1a** (2.0 cm³), **2** (1.0 mmol), **3a** (1.0 mmol), promoter (0.15 mmol) in solvent at 55 °C for 16 h in a sealed tube under N_2

^a1-[(Nitromethyl)thio]propan-2-ol (5) was obtained in 41% yield

^bReaction conducted with 1.5 mmol of 1a

^cReaction conducted with 0.3 mmol of 2

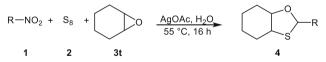
^dReaction conducted with 0.2 mmol of 2

^eReaction conducted at 25 °C

proceeded smoothly to give the corresponding product 4x in 52% yields (Table 3, entry 2). However, when 2-nitropropane (1d) was used, only a trace amount of the product 4y was detected (Table 3, entry 3). These results indicated that the steric hindrance of alkyl groups disfavored the reaction obviously which indicates that the cyclization step proceeds through an SN2 pathway.

The mechanism is not clear at the present stage. Unfortunately, the exact role of silver salt and how do it catalyze this transformation is still unclear, but it should be noted that the reaction did not work well in absence of silver acetate. A plausible mechanism for the formation of the main product **4** is shown in Scheme 2. The reaction starts with initial formation of conjugate base of nitroalkane **5** by the action of AgOAc. The reaction of **5** with elemental sulfur forms the intermediated **6**, which attacks **3a** to afford ring-opened intermediate **7**. Finally, the ring closing of the intermediate **7** through an SN2 reaction gave the desired product **4**.

The structures of the products were confirmed by spectroscopic analyses. For example, the ¹H NMR spectrum of 4a showed characteristic (AB)X spin system for


Table 2 Reaction scope with oxiranes

$$H_{3}C-NO_{2} + S_{8} + R^{1} + R^{3} + R^{4} + \frac{AgOAc, H_{2}O}{55 °C, 16 h} + R^{3} + R^{4} + R^{4$$

Entry	Epoxide	R^1, R^2, R^3, R^4	4 , yield/%
1	3 a	CH ₃ , H, H, H	4a , 90
2	3b	Et, H, H, H	4b , 92
3	3c	<i>n</i> -Pr, H, H, H	4c , 83
4	3d	CH ₃ , CH ₃ , CH ₃ , CH ₃	4d , 48
5	3 e	(CH ₃) ₂ CHOCH ₂ , H, H, H	4e , 90
6	3f	PhCH ₂ OCH ₂ , H, H, H	4f , 92
7	3g	PhOCH ₂ , H, H, H	4g , 95
8	3h	CH ₃ , H, CH ₃ OCO, H	4h , 88
9	3i	<i>n</i> -Pr, H, CH ₃ , H	4i , 96
10	3j	ClCH ₂ , H, H, H	4j , 68
11	3k	(CH ₃) ₃ C, H, H, H	4k , 95
12	31	CH ₂ CHCH ₂ OCH ₂ , H, H, H	41 , 82
13	3m	PhC(OH)(CF ₃), H, H, H	4m , 62
14	3n	H, Ph, H, H	4n , 81 ^a
15	30	H, 4-Me ₂ N-C ₆ H ₄ , H, H	40 , 57 ^a
16	3р	4-NO ₂ -C ₆ H ₄ , H, H, H	4p , 73
17	3 q	H, 4-MeO-C ₆ H ₄ , H, H	4q , 66 ^a
18	3r	Ph, Ph, H, H	4r , 79
19	3 s	PhCO, Ph, H, H	4s , 70 ^a
20	3t	–(CH ₂) ₄ –, H, H	4 t, 97
21	3 u	-(CH) ₂ (CH ₂) ₂ -, H, H	4u , 71
22	3v	–(CH ₂) ₅ –, H, H	4v , 57
23	3w	–(CH ₂) ₃ –, H, H	-
24	3x	–(CH ₂) ₆ –, H, H	-

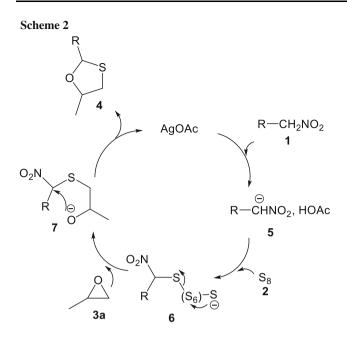

For all entries: **1a** (1.5 mmol), **2** (0.3 mmol), **3** (1.0 mmol), AgOAc (0.15 mmol) in 3 cm³ H₂O at 55 °C for 16 h in a sealed tube under N₂ ^aThe yield of the benzylic attacked product

Table 3 Reaction scope with nitroalkanes

Entry	Nitroalkane	R	4 , yield/%
1	1b	Et	4w , 61
2	1c	<i>n</i> -Pr	4x , 52
3	1d	<i>i</i> -Pr	Traces ^a

For all entries: 1 (1.5 mmol), 2 (0.3 mmol), 3t (1.0 mmol), AgOAc (0.15 mmol) in 3 cm³ H₂O at 55 °C for 16 h ^aDetermined by GC-Macc

the CH₂-CH H-atoms, together with a doublet for the methyl group. The ¹³C-NMR spectrum of 4a exhibited four signals in agreement with the proposed structure.

In summary, we report on the catalytic multicomponent reaction for the synthesis of 1,3-oxathiolane skeletons. The presence of a silver salt is crucial for the success of the reaction. We have further shown that the steric hindrance of alkyl group on nitroalkane structure adversely affects the reaction outcome. The optimized reaction conditions given above were compatible with a wide variety of oxiranes. Use of this method offers an environmentally benign route for the synthesis of 1,3-oxathiolane skeletons from readily available starting materials and in good-to-excellent yields.

Experimental

Epoxides, elemental sulfur, nitroalkanes, catalysts, and solvents were obtained from Merck and were used without further purification. Melting points: Electrothermal-9100 apparatus. IR Spectra: Shimadzu IR-460 spectrometer. ¹H and ¹³C NMR spectra: Bruker DRX-500 AVANCE instrument; in CDCl₃ at 500.1 and 125.7 MHz, resp; δ in ppm, *J* in Hz. EI-MS (70 eV): Finnigan-MAT-8430 mass spectrometer. Elemental analyses (C, H, N) were performed with a Heraeus CHN-O-Rapid analyzer. The results agreed favorably with the calculated values (see ESI for characterization data for all products). All known compounds gave satisfactory spectroscopic data and were consistent with that reported in the literature.

General procedure for the preparation of 4

To a mixture of 0.076 g elemental sulfur (0.3 mmol), oxirane (1.0 mmol), and 0.025 g AgOAc (0.15 mmol) in 3 cm³ H₂O at 55 °C was gradually added nitroalkane (1.5 mmol). The resulting pale yellow mixture was then evacuated, back-filled with N₂ (3 times), and stirred for 16 h at 55 °C. After completion of the reaction, it was diluted by 5 cm³ EtOAc and 5 cm³ saturated NH₄Cl solution. The mixture was stirred for additional 30 min and the two layers were separated. The aqueous layer was then extracted with EtOAc (8 cm³ × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuum. The residue was purified by chromatography (silica gel, hexane:EtOAc) to give the desired product [32].

5-Methyl-1,3-oxathiolane (4a, C₄H₈OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 12/1, $R_f = 0.43$) affording 0.09 g (90%) of **4a** as a colorless oil. IR (KBr): $\bar{\nu} = 2981$, 2965, 1465, 1321, 1187, 1011 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.25$ (3H, d, ³J = 6.1 Hz, Me), 3.04 (1H, dd, ²J = 12.1 Hz, ³J = 6.4 Hz, CH), 3.12 (1H, dd, ²J = 12.1 Hz, ³J = 10.2 Hz, CH), 4.01 (1H, m, CH), 4.86 (1H, d, ²J = 6.3 Hz, CH), 4.92 (1H, d, ²J = 6.3 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 22.5$ (Me), 48.3 (CH₂), 78.3 (CH₂), 85.1 (CH) ppm; EI-MS (70 eV): m/z (%) = 104 (M⁺, 23), 89 (21), 74 (38), 62 (58), 58 (100), 42 (39).

5-Ethyl-1,3-oxathiolane (4b, C₅H₁₀OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 12/1, $R_{\rm f} = 0.51$) affording 0.11 g (92%) **4b** as a colorless oil. IR (KBr): $\bar{v} = 2961$, 1465, 1323, 1050 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 0.93$ (3H, t, ³J = 6.8 Hz, Me), 1.53–1.56 (2H, m, CH₂), 2.98 (1H, dd, ²J = 11.9 Hz, ³J = 5.9 Hz, CH), 3.17 (1H, dd, ²J = 11.9 Hz, ³J = 9.7 Hz, CH), 4.08–4.11 (1H, m, CH), 4.92 (1H, d, ²J = 6.1 Hz, CH), 5.05 (1H, d, ²J = 6.1 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 11.0$ (Me), 29.5 (CH₂), 47.1 (CH₂), 78.5 (CH₂), 89.9 (CH) ppm; EI-MS (70 eV): m/z (%) = 118 (M⁺, 12), 89 (29), 88 (43), 73 (100), 63 (67), 56 (31).

5-Propyl-1,3-oxathiolane (4c, C₆H₁₂OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 12/1, $R_{\rm f} = 0.56$) affording 0.11 g (83%) **4c** as a colorless oil. IR (KBr): $\bar{\nu} = 2986$, 2957, 1487, 1321 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 0.95$ (3H, t, ³J = 6.0 Hz, Me), 1.45–1.53 (4H, m, 2 CH₂), 3.11–3.21 (2H, m, 2 CH), 4.13–4.16 (1H, m, CH), 4.82 (1H, d, ²J = 6.5 Hz, CH), 4.99 (1H, d, ²J = 6.5 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 15.8$ (Me), 20.1 (CH₂), 37.2 (CH₂), 48.3 (CH₂), 79.7 (CH₂), 87.6 (CH)

ppm; EI-MS (70 eV): m/z (%) = 132 (M⁺, 7), 102 (44), 89 (15), 87 (100), 86 (32), 70 (68).

4,4,5,5-Tetramethyl-1,3-oxathiolane (4d, C₇H₁₄OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 10/1, $R_f = 0.39$) affording 0.07 g (48%) **4d** as a pale yellow oil. IR (KBr): $\bar{\nu} = 2979$, 2954, 1478, 1312, 1046 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.29$ (6H, m, 2 CH₃), 1.48 (6H, m, 2 CH₃), 4.71 (2H, s, CH₂) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 22.4$ (2 CH₃), 24.1 (2 CH₃), 69.4 (CH₂), 70.1 (C), 97.5 (C) ppm; EI-MS (70 eV): m/z (%) = 146 (M⁺, 2), 131 (23), 116 (59), 100 (100), 84 (87).

5-(Isopropoxymethyl)-1,3-oxathiolane (4e, C₇H₁₄O₂S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 11/1, $R_{\rm f} = 0.43$) affording 0.15 g (90%) **4e** as a colorless oil. IR (KBr): $\bar{\nu} = 2976$, 2961, 2932, 1461, 1289, 1044 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.21$ (6H, d, ³J = 6.0 Hz, 2 Me), 3.04–3.18 (2H, m, 2 CH), 4.11–4.17 (2H, m, CH₂), 4.43–4.58 (2H, m, 2 CH), 4.93 (1H, d, ²J = 6.5 Hz, CH), 5.11 (1H, d, ²J = 6.5 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 21.2$ (2 Me), 43.7 (CH₂), 69.3 (CH₂), 72.8 (CH₂), 75.9 (CH), 87.1 (CH) ppm; EI-MS (70 eV): m/z (%) = 162 (M⁺, 11), 103 (100), 89 (61), 73 (34), 64 (69), 59 (73).

5-(Benzyloxymethyl)-1,3-oxathiolane (4f, C₁₁H₁₄O₂S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 9/1, $R_f = 0.40$) affording 0.19 g (92%) **4f** as a yellow oil. IR (KBr): $\bar{\nu} = 3077, 2978, 2960, 1541, 1462, 1290, 1035 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): <math>\delta = 2.97-3.14$ (2H, m, 2 CH), 3.92–4.16 (3H, m, 3 CH), 4.78–4.81 (2H, m, 2 CH), 4.95 (1H, d, ²J = 6.2 Hz, CH), 5.11 (1H, d, ²J = 6.2 Hz, CH), 7.29–7.37 (5H, m, 5 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 45.1$ (CH₂), 69.2 (CH₂), 75.1 (CH₂), 79.2 (CH₂), 88.1 (CH), 127.8 (CH), 128.2 (2 CH), 129.2 (2 CH), 136.8 (C) ppm; EI-MS (70 eV): m/z (%) = 210 (M⁺, 1), 185 (17), 119 (47), 107 (29), 103 (41), 91 (100), 77 (47), 54 (38).

5-(Phenoxymethyl)-1,3-oxathiolane (4g, C₁₀H₁₂O₂S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 8/1, $R_{\rm f} = 0.52$) affording 0.19 g (95%) **4g** as a colorless oil. IR (KBr): $\bar{\nu} = 3069$, 2982, 2969, 1562, 1474, 1296, 1056 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 2.96$ (1H, dd, ²J = 12.3 Hz, ³J = 5.5 Hz, CH), 3.12 (1H, dd, ²J = 12.3 Hz, ³J = 9.9 Hz, CH), 4.33–4.42 (2H, m, 2 CH), 4.71–4.74 (1H, m, 1 CH), 4.91 (1H, d, ²J = 6.7 Hz, CH), 5.10 (1H, d, ²J = 6.7 Hz, CH), 6.86 (2H, d, ³J = 6.7 Hz, 2 CH), 6.94 (1H, t, ³J = 6.4 Hz, CH), 7.25 (2H, t, ³J = 6.4 Hz, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 43.7$ (CH₂), 68.1 (CH₂), 78.6 (CH₂), 86.1 (CH), 114.6 (2 CH), 121.7 (CH), 129.2 (2 CH),

159.6 (C) ppm; EI-MS (70 eV): m/z (%) = 196 (M⁺, 4), 134 (52), 103 (61), 93 (38), 77 (100), 54 (49).

$\label{eq:Methyl} \begin{array}{l} \textit{Methyl 5-methyl-1,3-oxathiolane-5-carboxylate} \\ \textbf{(4h, C_6H_{10}O_3S)} \end{array}$

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 8/1, $R_{\rm f} = 0.52$) affording 0.14 g (88%) **4h** as a colorless oil. IR (KBr): $\bar{\nu} = 3011$, 2981, 1735, 1463, 1282, 1026 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.45$ (3H, s, CH₃), 3.14 (1H, d, ²J = 10.9 Hz, CH), 3.28 (1H, d, ²J = 10.9 Hz, CH), 3.78 (3H, s, OCH₃), 4.81 (1H, d, ²J = 5.9 Hz, CH), 4.93 (1H, d, ²J = 5.9 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 21.8$ (CH₃), 47.2 (CH₂), 55.3 (CH₃), 79.2 (CH₂), 100.1 (C), 172.1 (C) ppm; EI-MS (70 eV): *m/z* (%) = 162 (M⁺, 1), 131 (34), 103 (100), 100 (41).

5-Methyl-5-propyl-1,3-oxathiolane (4i, C₇H₁₄OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 11/1, $R_{\rm f} = 0.32$) affording 0.14 g (96%) **4i** as a colorless oil. IR (KBr): $\bar{\nu} = 3274$, 3260, 2975, 2249, 1567, 1168 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 0.93$ (3H, t, ³J = 6.2 Hz, CH₃), 1.21 (3H, s, CH₃), 1.35 (2H, m, CH₂), 1.64 (2H, t, ³J = 6.2 Hz, CH₂), 2.98 (1H, d, ²J = 11.1 Hz, CH), 3.19 (1H, d, ²J = 11.1 Hz, CH), 4.81–4.87 (2H, m, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 13.2$ (CH₃), 16.1 (CH₂), 25.2 (CH₃), 40.1 (CH₂), 54.1 (CH₂), 78.8 (CH₂), 93.1 (C) ppm; EI-MS (70 eV): m/z (%) = 146 (M⁺, 3), 131 (28), 103 (81), 100 (58), 84 (82).

5-(Allyloxymethyl)-1,3-oxathiolane (4l, C₇H₁₂O₂S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 11/1, $R_f = 0.28$) affording 0.13 g (82%) **4I** as a colorless oil. IR (KBr): $\bar{\nu} = 2991$, 2963, 1543, 1462, 1287, 1036 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 3.16$ (1H, dd, ²J = 11.1 Hz, ³J = 6.3 Hz, CH), 3.29 (1H, dd, ²J = 11.1 Hz, ³J = 9.6 Hz, CH), 4.16–4.35 (3H, m, 3 CH), 4.52–4.63 (2H, m, 2 CH), 4.73 (1H, d, ²J = 6.0 Hz, CH), 4.86 (1H, d, ²J = 6.0 Hz, CH), 5.64–5.72 (2H, m, 2 CH), 6.28–6.36 (1H, m, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 42.1$ (CH₂), 68.3 (CH₂), 71.2 (CH₂), 77.3 (CH₂), 86.1 (CH), 116.2 (CH₂), 137.9 (CH) ppm; EI-MS (70 eV): m/z (%) = 160 (M⁺, 5), 119 (24), 103 (100), 98 (38), 89 (76), 41 (81).

2,2,2-Trifluoro-1-(1,3-oxathiolan-5-yl)-1-phenylethan-1-ol (4m, $C_{11}H_{11}F_3O_2S$)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 5/1, $R_{\rm f} = 0.38$) affording 0.16 g (62%) **4m** as a pale yellow oil. IR (KBr): $\bar{\nu} = 3328, 3075, 2974, 1572, 1435, 1311, 1052 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): <math>\delta = 3.11-3.24$ (2H, m, 2 CH), 4.69 (1H, d, ²*J* = 6.5 Hz, CH), 4.83 (1H, d, ²*J* = 6.5 Hz, CH), 5.14–5.22 (1H, m, CH), 6.16 (1H, br s, OH), 7.22

(2H, t, ${}^{3}J = 6.7$ Hz, 2 CH), 7.32 (1H, t, ${}^{3}J = 6.7$ Hz, CH), 7.61 (2H, d, ${}^{3}J = 6.9$ Hz, 2 CH) ppm; 13 C NMR (125.7 MHz, CDCl₃): $\delta = 39.1$ (CH₂), 78.7 (CH₂), 86.9 (CH), 90.1 (C, q, ${}^{2}J = 32.2$ Hz), 125.0 (CH), 129.3 (2 CH), 129.9 (2 CH), 133.9 (CF₃, q, ${}^{1}J = 270.9$ Hz), 138.1 (C, q, ${}^{3}J = 9.1$ Hz) ppm; EI-MS (70 eV): m/z (%) = 264 (M⁺, 2), 195 (43), 194 (23), 105 (76), 77 (100), 54 (44).

4-Phenyl-1,3-oxathiolane (4n, C₉H₁₀OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 9/1, $R_f = 0.40$) affording 0.13 g (81%) **4n** as a colorless oil. IR (KBr): $\bar{v} = 3053$, 2978, 1548, 1436, 1320, 1051 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 4.21-4.24$ (1H, m, CH), 4.47 (1H, dd, $^{2}J = 10.8$ Hz, $^{3}J = 6.0$ Hz, CH), 4.58 (1H, dd, $^{2}J = 10.8$ Hz, $^{3}J = 9.0$ Hz, CH), 4.76 (1H, d, $^{2}J = 6.4$ Hz, CH), 4.89 (1H, d, $^{2}J = 6.4$ Hz, CH), 7.27-7.36 (5H, m, 5 CH) ppm; ¹³C NMR (125.7 MHz, $CDCl_3$): $\delta = 65.2$ (CH), 76.2 (CH₂), 81.7 (CH₂), 127.8 (2 CH), 128.8 (CH), 129.1 (2 CH), 138.2 (C) ppm; EI-MS $(70 \text{ eV}): m/z \ (\%) = 166 \ (M^+, 12), 120 \ (60), 104 \ (81), 89$ (57), 77 (100), 54 (38).

N,*N*-*Dimethyl*-4-(1,3-oxathiolan-4-yl)aniline (**40**, C₁₁H₁₅NOS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 5/1, $R_f = 0.29$) affording 0.12 g (57%) 40 as a pale yellow solid. M.p.: 57-59 °C; IR (KBr): $\bar{v} = 3042$, 2951, 1557, 1458, 1344, 1127, 1015 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 3.11$ (6H, s, 2 CH₃), 4.10–4.17 (1H, m, CH), 4.42 (1H, dd, ${}^{2}J = 11.2$ Hz, ${}^{3}J = 6.2$ Hz, CH), 4.57 (1H, dd, ${}^{2}J = 11.2 \text{ Hz}, {}^{3}J = 9.7 \text{ Hz}, \text{ CH}), 4.76 (1H,$ d. ${}^{2}J = 6.1$ Hz, CH), 4.93 (1H, d, ${}^{2}J = 6.1$ Hz, CH), 6.79 $(2H, d, {}^{3}J = 7.1 \text{ Hz}, \text{CH}), 7.11 (2H, d, {}^{3}J = 7.1 \text{ Hz}, \text{CH})$ ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 47.6$ (2 CH₃), 63.0 (CH), 71.9 (CH₂), 81.5 (CH₂), 112.1 (2 CH), 126.7 (C), 129.7 (2 CH), 147.6 (C) ppm; EI-MS (70 eV): m/ $z (\%) = 209 (M^+, 6), 165 (17), 120 (100), 96 (72), 89$ (83), 77 (43).

5-(4-Nitrophenyl)-1,3-oxathiolane (4p, C₉H₉NO₃S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 3/1, $R_f = 0.22$) affording 0.15 g (73%) **4p** as a yellow solid. M.p.: 101–103 °C; IR (KBr): $\bar{v} = 3025$, 2946, 1567, 1537, 1455, 1381, 1333, 1211, 1044 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 3.32-3.44$ (2H, m, 2 CH), 4.68–4.81 (2H, m, 2 CH), 5.06–5.09 (1H, m, CH), 7.71 (2H, d, ³J = 6.7 Hz, 2 CH), 8.24 (2H, d, ³J = 6.7 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 42.1$ (CH₂), 72.4 (CH₂), 95.2 (CH), 128.7 (2 CH), 133.2 (2 CH), 145.1 (C), 148.9 (C) ppm; EI-MS (70 eV): m/z (%) = 211 (M⁺, 7), 165 (34), 149 (64), 122 (22), 89 (100), 54 (31).

4-(4-Methoxyphenyl)-1,3-oxathiolane (4q, $C_{10}H_{12}O_2S$) The crude product was purified by column chromatogra-

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 7/1, $R_f = 0.34$) affording 0.13 g (66%) **4q** as a yellow solid. M.p.: 53–55 °C; IR (KBr): $\bar{v} = 3061$, 2988, 1562, 1453, 1320, 1176, 1023 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 3.76$ (3H, s, OCH₃), 4.03–4.08 (1H, m, CH), 4.36 (1H, dd, ²J = 11.1 Hz, ³J = 5.8 Hz, CH), 4.49 (1H, dd, ²J = 11.1 Hz, ³J = 9.7 Hz, CH), 4.78–4.86 (2H, m, 2 CH), 6.90 (2H, d, ³J = 6.9 Hz, CH), 7.27 (2H, d, ³J = 6.9 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 57.1$ (CH₃), 63.2 (CH), 73.7 (CH₂), 82.2 (CH₂), 114.1 (2 CH), 127.5 (2 CH), 130.1 (C), 160.1 (C) ppm; EI-MS (70 eV): m/z (%) = 166 (M⁺, 12), 165 (23), 150 (38), 134 (76), 107 (100), 89 (87).

4,5-Diphenyl-1,3-oxathiolane (4r, C₁₅H₁₄OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 5/1, $R_{\rm f} = 0.38$) affording 0.19 g (79%) **4r** as a colorless solid. M.p.: 111–113 °C; IR (KBr): $\bar{v} = 3053$, 2978, 1548, 1436, 1320, 1051 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 4.59$ (1H, d, ³J = 10.5 Hz, CH), 4.64 (1H, d, ²J = 6.1 Hz, CH), 4.86 (1H, d, ²J = 6.1 Hz, CH), 5.38 (1H, d, ³J = 10.5 Hz, CD(l₃): $\delta = 60.2$ (CH), 75.3 (CH₂), 100.1 (CH), 125.6 (CH), 126.7 (2 CH), 127.1 (CH), 127.8 (2 CH), 128.4 (2 CH), 129.2 (2 CH), 137.1 (C), 139.7 (C) ppm; EI-MS (70 eV): m/z (%) = 242 (M⁺, 1), 165 (24), 180 (81), 88 (47), 77 (100), 54 (56).

Phenyl(4-*phenyl*-1,3-*oxathiolan*-5-*yl*)*methanone* (4s, $C_{16}H_{14}O_2S$)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 4/1, $R_f = 0.56$) affording 0.19 g (70%) **4s** as a colorless solid. M.p.: 81–84 °C; IR (KBr): $\bar{v} = 3050, 2971, 1711, 1554, 1447, 1338, 1034 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): <math>\delta = 4.47$ (1H, d, ³J = 10.1 Hz, CH), 4.73 (1H, d, ²J = 8.2 Hz, CH), 4.93 (1H, d, ²J = 8.2 Hz, CH), 5.59 (1H, d, ³J = 10.1 Hz, CH), 7.17–7.40 (5H, m, 5 CH), 7.59–7.68 (3H, m, 3 CH), 8.11 (2H, d, ³J = 6.9 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 57.1$ (CH), 79.4 (CH₂), 108.4 (CH), 124.7 (CH), 126.2 (2 CH), 129.1 (2 CH), 130.2 (2 CH), 131.8 (2 CH), 133.2 (CH), 136.2 (C), 137.6 (C), 196.1 (C) ppm; EI-MS (70 eV): m/z (%) = 270 (M⁺, 4), 193 (35), 165 (51), 105 (100), 77 (76), 54 (68).

Hexahydrobenzo[*d*][1,3]*oxathiole* (4t, C₇H₁₂OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 10/1, $R_{\rm f} = 0.36$) affording 0.14 g (97%) **4t** as a colorless oil. IR (KBr): $\bar{\nu} = 3008$, 2976, 1546, 1313, 1019 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.38$ –2.01 (8H, m, 8 CH), 2.85–2.94 (1H, m, CH),

4.07–4.18 (1H, m, CH), 4.78 (1H, d, ${}^{2}J$ = 6.0 Hz, CH), 4.93 (1H, d, ${}^{2}J$ = 6.0 Hz, CH) ppm; 13 C NMR (125.7 MHz, CDCl₃): δ = 25.6 (CH₂), 26.4 (CH₂), 33.5 (CH₂), 34.8 (CH₂), 51.7 (CH), 75.3 (CH₂), 89.0 (CH) ppm; EI-MS (70 eV): m/z (%) = 144 (M⁺, 5), 114 (33), 98 (69), 88 (43), 83 (100), 56 (26).

3a,4,5,7a-Tetrahydrobenzo[d][1,3]oxathiole (**4u**, C₇H₁₀OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 10/1, $R_f = 0.29$) affording 0.10 g (71%) **4u** as a colorless oil. IR (KBr): $\bar{v} = 3051$, 2917, 1531, 1312, 1023 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.95-2.11$ (4H, m, 4 CH), 3.01–3.09 (1H, m, CH), 4.19–4.23 (1H, m, CH), 4.67 (1H, d, ²J = 6.8 Hz, CH), 4.82 (1H, d, ²J = 6.8 Hz, CH), 5.46 (1H, t, ³J = 6.4 Hz, CH), 5.68–5.79 (1H, m, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 27.1$ (CH₂), 29.0 (CH₂), 51.3 (CH), 72.4 (CH₂), 87.5 (CH), 128.3 (CH), 130.4 (CH) ppm; EI-MS (70 eV): *m/z* (%) = 142 (M⁺, 17), 112 (35), 96 (53), 88 (33), 83 (100), 80 (86), 52 (20).

$Hexahydro-4H\-cyclohepta[d][1,3] oxathiole$

 $(4v, C_8H_{14}OS)$

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 10/1, $R_{\rm f} = 0.44$) affording 0.09 g (57%) **4v** as a colorless oil. IR (KBr): $\bar{v} = 3051$, 2917, 1631, 1312, 1123 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.22$ –1.97 (10H, m, 10 CH), 2.86–2.89 (1H, m, CH), 3.93–4.03 (1H, m, CH), 4.74 (1H, d, ²J = 6.2 Hz, CH), 4.92 (1H, d, ²J = 6.2 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 27.1$ (CH₂), 28.4 (CH₂), 28.8 (CH₂), 31.4 (CH₂), 34.1 (CH₂), 54.9 (CH), 75.1 (CH₂), 91.3 (CH) ppm; EI-MS (70 eV): *m*/*z* (%) = 158 (M⁺, 4), 128 (35), 112 (60), 97 (100), 88 (43), 64 (43), 63 (20).

2-*Methylhexahydrobenzo[d][1,3]oxathiole* (**4w**, C₈H₁₄OS)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 10/1, $R_{\rm f} = 0.49$) affording 0.10 g (61%) **4w** as a colorless oil. IR (KBr): $\bar{v} = 3000$, 2986, 1541, 1322, 1023 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.42-2.12$ (11H, m, 8 CH, CH₃), 2.89–2.97 (1H, m, CH), 4.03–4.08 (1H, m, CH), 4.93 (1H, q, ³J = 6.2 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 21.0$ (CH₃), 24.5 (CH₂), 27.1 (CH₂), 33.4 (CH₂), 37.2 (CH₂), 50.1 (CH), 86.2 (CH), 87.5 (CH) ppm; EI-MS (70 eV): *m*/*z* (%) = 158 (M⁺, 3), 114 (25), 98 (53), 78 (67), 83 (100), 82 (67).

2-*Ethylhexahydrobenzo*[*d*][1,3]*oxathiole* (**4x**, C₉H₁₆OS) The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 13/1, $R_f = 0.31$) affording 0.09 g (52%) **4x** as a colorless oil. IR (KBr): $\bar{\nu} = 2989$, 2956, 1562, 1325, 1033 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 0.92$ (3H, t, ³J = 6.2 Hz, CH₃), 1.24–2.17 (10H, m, 8 CH, CH₂), 2.89–2.94 (1H, m, CH), 3.85–3.96 (1H, m, CH), 4.83 (1H, t, ³J = 6.4 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 9.7$ (CH₃), 25.3 (CH₂), 25.9 (CH₂), 29.3 (CH₂), 30.8 (CH₂), 36.0 (CH₂), 50.2 (CH), 88.1 (CH), 91.2 (CH) ppm; EI-MS (70 eV): m/z (%) = 172 (M⁺, 5), 141 (26), 114 (27), 98 (45), 92 (58), 83 (100).

1-[(Nitromethyl)thio]propan-2-ol (**5**, C₄H₉NO₃S)

The crude product was purified by column chromatography (SiO₂; hexane/EtOAc 2/1, $R_{\rm f} = 0.28$) affording 0.06 g (41%) of **5** as a yellow solid. M.p.: 81–84 °C; IR (KBr): $\bar{\nu} = 3287$, 2941, 1546, 1453, 1372, 1301, 1287, 1024 cm⁻¹; ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.19$ (3H, d, ³J = 5.7 Hz, Me), 2.45–2.52 (2H, m, 2 CH), 3.81–3.90 (1H, m, CH), 5.79 (2H, s, CH₂), 6.34 (1H, br s, OH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 24.6$ (Me), 48.1 (CH₂), 69.1 (CH), 91.4 (CH₂) ppm; EI-MS (70 eV): *m*/*z* (%) = 151 (M⁺, 1), 133 (43), 91 (22), 61 (14), 58 (100).

Acknowledgements We thank Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, for supporting this work.

References

- 1. Aitken RA, Power LA (2008) In: Joule JA (ed) Comprehensive heterocyclic chemistry III, vol 4, 3rd edn. Elsevier, p 841
- Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Molecules 20:16852
- Bandyopadhyay D, Banik BK (2017) Curr Med Chem. doi:10. 2174/0929867324666170223152137
- 4. Chen YH, Sun XL, Guan HS, Liu YK (2017) J Org Chem 82:4774
- Zhang S, Cheng B, Wang SA, Zhou L, Tung CH, Wang J, Xu Z (2017) Org Lett 19:1072
- 6. Wdowik T, Chemler SR (2017) J Am Chem Soc 139:11493
- 7. Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F (2017) Curr Org Chem 21:964
- 8. Ganem B (2009) Acc Chem Res 42:463
- 9. Zhu Q, Yuan Q, Chen M, Guo M, Huang H (2017) Angew Chem Int Ed 56:5101
- 10. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Chem Rev 114:8323
- Robbe Y, Fernandez JP, Dubief R, Chapat JP, Sentenac-Roumanou H, Fatome M, Laval JD, Subra G (1982) Eur J Med Chem 17:235
- 12. Chu CK (ed) (2003) Antiviral nucleosides: chiral synthesis and chemotherapy. Elsevier, Amsterdam
- 13. Cihlar T, Ray AS (2010) Antivir Res 85:39
- Romeo G, Chiacchio U, Corsaro A, Merino P (2010) Chem Rev 110:3337
- Férir G, Kaptein S, Neyts J, De Clercq E (2008) Rev Med Virol 18:19
- Caso MF, D'Alonzo D, D'Errico S, Palumbo G, Guaragna A, Ghosh RK, Ghosh SM, Chawla S (2011) Expert Opin Pharmacother 12:31

- 17. Wu JY, Luo ZB, Dai LX, Hou XL (2008) J Org Chem 73:9137
- Clegg W, Harrington RW, North M, Villuendas P (2010) J Org Chem 75:6201
- 19. Samzadeh-Kermani A (2014) Monatsh Chem 145:611
- 20. Yavari I, Ghazanfarpour-Darjani M, Hossaini Z, Sabbaghan M, Hosseini N (2008) Synlett:889
- 21. Ghazanfarpour-Darjani M, Khodakarami A (2016) Monatsh Chem 147:829
- 22. Yavari I, Ghazanfarpour-Darjani M (2014) J Sulfur Chem 35:477
- 23. Samzadeh-Kermani A, Zamenraz S (2017) Monatsh Chem 148:1753
- 24. Ghazanfarpour-Darjani M, Babapour-Kooshalshahi M, Mousavi-Safavi SM, Akbari-Neyestani J, Khalaj M (2016) Synlett 27:259

- 25. Samzadeh-Kermani A (2016) Tetrahedron 72:5301
- 26. Samzadeh-Kermani A (2016) Synlett 26:643
- 27. Khalaj M, Ghazanfarpour-Darjani M (2016) Monatsh Chem 147:2043
- 28. Khalaj M, Ghazanfarpour-Darjani M (2015) RSC Adv 5:80698
- 29. Khalaj M, Ghazanfarpour-Darjani M, Talei Bavil Olyai MR, Faraji-Shamami S (2016) J Sulfur Chem 37:211
- Khalaj M, Ghazanfarpour-Darjani M, Barat-Seftejani F, Nouri A (2017) Synlett 28:1445
- Ghazanfarpour-Darjani M, Barat-Seftejani F, Khalaj M, Mousavi-Safavi SM (2017) Helv Chim Acta. doi:10.1002/hlca. 201700082
- 32. Hojo M, Ohkuma M, Hosomi A (1992) Chem Lett 21:1073