<u>LETTERS</u>

POCl₃-Mediated Reaction of 1-Acyl-1-carbamoyl Oximes: A New Entry to Cyanoformamides

Jiming Yang,[†] Dexuan Xiang,[†] Rui Zhang,^{†,‡} Ning Zhang,^{*,†} Yongjiu Liang,[†] and Dewen Dong^{*,†,‡}

[†]Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

[‡]Changzhou Institute of Energy Storage Materials & Devices, Changzhou, 213000, P. R. China

(5) Supporting Information

ABSTRACT: A facile and efficient one-pot synthesis of cyanoformamides was developed from readily available 1-acyl-1-carbamoyl oximes mediated by phosphoryltrichloride (POCl₃) under mild conditions in good to high yields.

C yanoformamides have been used as key building blocks¹ in the synthesis of symmetrical/unsymmetrical substituted ureas,² acrylonitriles,³ and some aza-heterocycles, such as tetrazoles⁴ and lactams.⁵ They also act as stable sources of isocyanates and hydrogen cyanide in reactions requiring neutral or thermal conditions.⁶ In addition, *N*,*N*-dimethyl cyanoformamide has been isolated from several vegetables and fruits, such as tomatoes, oranges, and apples, as a degradation metabolite of a pesticide.⁷ The first natural product with this functionality in its structure, ceratinamine (Figure 1), was

Figure 1. Chemical structure of ceratinamine.

isolated in 1996 from the marine sponge *Pseudoceratinapurpur* ea^8 and was synthesized later;⁹ it has cytotoxic and potent antifouling activity. Its analogue, 7-hydroxyceratinamine, was isolated three years later from the marine sponge *Aplysinellasp.*¹⁰

In past decades, there have been only a few reports concerning the preparation of cyanoformamides. These involve the reactions of amines with reagents such as carbonyl cyanide, 4-chloro-5H-1,2,3-dithiazol-5-one, isonitroso Meldrum's acid, or its tosyl derivatives.^{1,5b,6a,11} The toxicity and complexity of these reagents and the high reactivity of the system limit the utility of these approaches. Later on, García-Egido and co-workers developed a synthetic route to cyanoformamides from primary amines and carbon dioxide under mild conditions, in which guanidine and cyanophosphonate were employed (Scheme 1).¹²

During the course of our studies on β -oxo amides, we developed an efficient synthesis of substituted pyridin-2(1*H*)-ones, pyrimidin-2(1*H*)-ones, and 1*H*-pyrazoles via the Vilsmeier-Haack reaction of a variety of β -oxo amide derivatives including cyclopropanes and enaminones.¹³ In our

Scheme 1. Synthesis of Cyanoformamides from Amines

previous work, we also achieved a one-pot synthesis of fully substituted 1*H*-pyrazoles from the oximes of 1-acyl-1-carbamoyl cyclopropanes under Vilsmeier conditions (POCl₃/DMF).¹⁴ When DMF was replaced with CH_2Cl_2 , the same substrates, cyclopropyloximes, afforded fully substituted isoxazoles in high yields (Scheme 2). The result suggested that POCl₃, being a reagent, ¹⁵ showed different reaction behavior from the Vilsmeier reagent, POCl₃/DMF.

Inspired by these findings and in continuation of our research interests in β -oxo amide derivatives, we became interested in examining the reaction behavior of the readily available 1-acyl-1-carbamoyl oximes toward POCl₃ under different conditions. As a result, we have provided a facile and efficient one-pot synthesis of cyanoformamides under mild conditions. Herein, we report our preliminary results.

The substrates, 1-acyl-1-carbamoyl oximes 1, were prepared from commercially available β -oxo amides and sodium nitrite in the presence of acetic acid in water in good yields.¹⁶ With substrates 1 in hand, we then selected 2-(hydroxyimino)-3-oxo-*N*-phenyl butanamide 1a as the model compound to examine its behavior with POCl₃. Thus, the reaction of 1a with a Vilsmeier reagent (POCl₃/DMF, 1.2 equiv) was first attempted at room temperature, but a complex mixture was formed as indicated by TLC (Table 1, entry 1). When 1a was heated with

Received: December 17, 2014

Scheme 2. Reaction of Cyclopropyl Oximes with POCl₃ in Different Solvents

Table 1. Reaction of 1a with POCl₃ in Different Conditions^a

н		POCI ₃	, solvent ► ditions		a			
entry	POCl ₃ (equiv)	solvent	temp (°C)	time (h)	yield (%) ^b			
1	1.2	DMF	rt	12	mixture			
2	1.2	DMF	80	2	21			
3	1.2	CH_2Cl_2	rt	12	0			
4	1.2	CH_2Cl_2	reflux	12	24			
5	1.2	CH ₃ CN	reflux	2	47			
6	1.2	toluene	80	2	59			
7	1.2	DCE	reflux	2	72			
8	1.5	DCE	reflux	2	83			
^a Reagents and conditions: 1 (1.0 mmol), solvent (5.0 mL). ^b Isolated								

yield.

POCl₃ (1.2 equiv) in DMF at 80 °C for 2 h, the reaction proceeded smoothly and furnished a colorless solid after workup and purification by silica gel column chromatography of the resulting reaction mixture, which was characterized as phenylcarbamoyl cyanide **2a** on the basis of its NMR spectral and analytical data (Table 1, entry 2). Moreover, the presence of the absorption band at 2234 cm⁻¹ in its IR spectra is assigned to the C \equiv N stretching mode, which further confirms the formation of the cyano group (see Supporting Information).

Our optimization of the reaction conditions, including solvent, reaction temperature, and the ratio of POCl₃ to 1a were then investigated as shown in Table 1. No reaction was observed when 1a was treated with POCl₃ (1.2 equiv) in CH_2Cl_2 at rt (Table 1, entry 3). Increasing the reaction temperature to reflux furnished 2a in 24% yield along with the recovery of 1a in 53% yield (Table 1, entry 4). Similarly, the yield of 2a was still not satisfactory when the reaction of 1a with POCl₃ (1.2 equiv) was performed in acetonitrile under reflux or in toluene at 80 °C (Table 1, entries 5 and 6). By subjecting 1a and POCl₃ (1.2 equiv) to 1,2-dichloroethane (DCE) under reflux, the reaction proceeded smoothly and afforded the corresponding 2a in 72% yield (Table 1, entry 7). The optimal conditions entailed reacting 1a with POCl₃ (1.5) equiv) in DCE at 80 °C for 2 h, whereby the yield of 2a reached 83% (Table 1, entry 8).

Under the conditions reported for 2a in Table 1 (entry 8), a series of reactions of 1-acyl-1-carbamoyl oximes 1 and POCl₃ were carried out, and some of the results are listed in Table 2. It

	O HO ³⁰⁵ N	$ \begin{array}{c} 0 \\ $, 80 °C	0 N N R ² 2	∑R ¹	
entry	1	\mathbb{R}^1	R ²	2	yield $(\%)^b$	
1	1a	C ₆ H ₅	Н	2a	83	
2	1b	4-MeOC ₆ H ₄	Н	2b	91	
3	1c	4-ClC ₆ H ₄	Н	2c	94	
4	1d	$4-MeC_6H_4$	Н	2d	88	
5	1e	$4-CF_3C_6H_4$	Н	2e	67	
6	1f	2-MeOC ₆ H ₄	Н	2f	95	
7	1g	$2-ClC_6H_4$	Н	2g	84	
8	1h	$2,4-Me_2C_6H_3$	Н	2h	89	
9	1i	5-Cl-2-MeOC ₆ H ₃	Н	2i	86	
10	1j	4-Cl-2,5-(MeO) ₂ C	₅ H ₂ H	2j	92	
11	1k	Bn	Н	2k	89	
12	11	C ₆ H ₅	Me	21	83	
13	1m	Et	Et	2m	85	
14	1n	(CH_2)	5	2n	72	
^a Reagents and conditions: 1 (1.0 mmol), POCL (1.5 mmol), DCE						

"Reagents and conditions: 1 (1.0 mmol), POCl₃ (1.5 mmol), DCl (5.0 mL), 80 °C, 1–2.5 h. ^bIsolated yield.

was observed that the reactions of oximes 1b-k bearing varied aryl and alkyl primary amide groups proceeded efficiently to afford the corresponding cyanoformamides 2b-k in good-tohigh yields (entries 2–11). The versatility of this protocol for cyanoformamide synthesis was further evaluated by reacting 1l-n bearing secondary amide groups with the POCl₃ in DCE (entries 12–15). The results shown above demonstrate the efficiency and synthetic value of the reaction for the synthesis of cyanoformamides 2 with respect to substrates 1 bearing variable amide groups R^1 and R^2 .

On the basis of the obtained results and our previously reported work,^{14,15,17} a plausible mechanism for the synthesis of cyanoformamides 2 is presented in Scheme 3. The reaction

Scheme 3. Plausible Mechanism for the Reaction of 1 with POCl₃ in DCE

commences from the phosphorylation between oxime 1 and $POCl_3$ to generate phosphorate intermediate A and a chloride anion.^{15,18} The attack of the chloride anion on the carbonyl group of A along with elimination of acyl chloride and the phosphorodichloride anion gives rise to cyanoformamide 2.¹⁹

In summary, a facile and efficient one-pot synthesis of cyanoformamides 2 has been developed from readily available 1-acyl-1-carbamoyl oximes 1 in the presence of POCl₃ in DCE. This protocol is associated with readily available starting materials, mild conditions, good-to-high yields, a broad substrate scope, and potential utility of the products. Expanding

the scope of the methodology and utilization of the products are currently under investigation in our laboratory.

ASSOCIATED CONTENT

Supporting Information

Experimental details, spectral and analytical data, copies of ¹H NMR and ¹³C NMR spectra for new compounds **2**. These materials are available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ning.zhang@ciac.ac.cn.

*E-mail: dwdong@ciac.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support of this research by the National Natural Science Foundation of China (21172211, 21304086, and 51373170) is greatly acknowledged.

REFERENCES

(1) (a) Beketoff, N. Chem. Ber. 1870, 3, 872. (b) Welcher, R.; Castellion, M.; Wystrach, V. J. Am. Chem. Soc. 1959, 81, 2541.

(2) (a) Chang, Y.; Lee, H.; Kim, K. *Tetrahedron Lett.* 2001, 42, 8197.
(b) Paz, J.; Pérez-Balado, C.; Iglesias, B.; Muñoz, L. J. Org. Chem. 2010, 75, 8039.

(3) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. **2010**, 132, 10070.

(4) Ford, R.; Knowles, P.; Lunt, E.; Marshall, S.; Penrose, A.; Ramsden, C.; Summers, A.; Walker, J.; Wright, D. J. Med. Chem. 1986, 29, 538.

(5) (a) Kobayashi, Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. Org. Lett. 2006, 8, 2711. (b) Kobayashi, Y.; Kamisaki, H.; Takeda, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. Tetrahedron 2007, 63, 2978. (c) Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303.

(6) (a) Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. J. Org. Chem. **1996**, 61, 2936. (b) Schoenfeld, R.; Ganem, B. Tetrahedron Lett. **1998**, 39, 4147.

(7) Harvey, J., Jr.; Han, J. C.-Y.; Reiser, R. W. J. Agric. Food Chem. 1978, 26, 529.

(8) Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. J. Org. Chem. 1996, 61, 2936.

(9) Schoenfeld, R. C.; Ganem, B. *Tetrahedron Lett.* **1998**, 39, 4147. (10) Fu, X.; Schmitz, F. J. Nat. Prod. **1999**, 62, 1072.

(11) (a) Oku, A.; Shono, M.; Oda, R. Makromol. Chem. 1964, 78, 186. (b) Linn, W.; Webster, O.; Benson, R. J. Am. Chem. Soc. 1965, 87, 3651. (c) Martin, E. Org. Synth. 1988, Coll. Vol. 6, 268. (d) Katagiri, N.; Morishita, Y.; Kaneko, C. Heterocycles 1997, 46, 503. (e) Katagiri, N.; Ishikura, M.; Morishita, Y.; Yamaguchi, M. Heterocycles 2000, 52, 283.

(12) García-Egido, E.; Paz, J.; Iglesias, B.; Muñoz, L. Org. Biomol. Chem. 2009, 7, 3991.

(13) (a) Pan, W.; Dong, D.; Wang, K.; Zhang, J.; Wu, R.; Xiang, D.;
Liu, Q. Org. Lett. 2007, 9, 2421. (b) Xiang, D.; Yang, Y.; Zhang, R.;
Liang, Y.; Pan, W.; Huang, J.; Dong, D. J. Org. Chem. 2007, 72, 8593.
(c) Xiang, D.; Wang, K.; Liang, Y.; Zhou, G.; Dong, D. Org. Lett. 2008, 10, 345. (d) Zhang, R.; Liang, Y.; Zhou, G.; Wang, K.; Dong, D. J. Org. Chem. 2008, 73, 8089. (e) Zhang, R.; Zhang, D.; Liang, Y.; Zhou, G.;
Dong, D. J. Org. Chem. 2011, 76, 2880. (f) Huang, P.; Zhang, N.;
Zhang, R.; Dong, D. Org. Lett. 2012, 14, 370.

(14) Wang, K.; Xiang, D.; Liu, J.; Pan, W.; Dong, D. Org. Lett. 2008, 10, 1691.

(15) For POCl₃-mediated heteroannulations, see: (a) Venkatesh, C.;
Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org. Lett. 2005, 7, 2169.
(b) Gammon, D. W.; Hunter, R.; Wilson, S. A. Tetrahedron 2005, 61, 10683. (c) Sharma, S. D.; Anand, R. D.; Kaur, G. Synth. Commun. 2004, 34, 1855. (d) Sharma, S. D.; Kanwar, S. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 1998, 37, 965.

(16) Huggins, M.; Barber, P.; Florian, D.; Howton, W. Synth. Commun. 2008, 38, 4226.

(17) Xiang, D.; Huang, P.; Wang, K.; Zhou, G.; Liang, Y.; Dong, D. Chem. Commum. 2008, 6236.

(18) Katagiri, N.; Ishikura, M.; Morishita, Y.; Yamaguchi, M. *Heterocycles* **2000**, *52*, 283.

(19) Bachman, G.; Welton, D. J. Org. Chem. 1947, 12, 221.