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ABSTRACT: Successive nucleophilic and electrophilic allylation mediated
by the bis-Boc-carbonate derived from 2-methylene-1,3-propane diol enables
formation of enantiomerically enriched 2,4-disubstituted pyrrolidines. An
initial enantioselective iridium-catalyzed transfer hydrogenative carbonyl C-
allylation is followed by Tsuji—Trost N-allylation using 2-nitrobenzene-
sulfonamide. Subsequent Mitsunobu cyclization provides the N-protected

2,4-disubstituted pyrrolidines.

he development of catalytic asymmetric methods for the

synthesis of saturated N-heterocycles"” is driven by the
frequency with which such structural motifs occur as
substructures in FDA-approved drugs’ and the growing
appreciation that stereochemical complexity improves pros-
pects for clinical success.”” Our exploration of hydrogen-
mediated reductive coupling” has enabled diverse methods for
catalytic enantioselective C—C bond formation, including
carbonyl allylation.”” In these processes, primary alcohol
oxidation is balanced by C—O reductive cleavage of an allylic
acetate pronucleophile resulting in the formation of a transient
aldehyde—allylmetal pair, which combine to form secondary
homoallylic alcohols. Based on this reactivity pattern, we
envisioned an approach to N-protected 2,4-disubstituted
pyrrolidines wherein the bis-Boc-carbonate derived from 2-
methylene-1,3-propane diol is subjected to successive
nucleophilic and electrophilic allylation (Figure 1).*° While
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Figure 1. Enantioselective pyrrolidine synthesis via successive
nucleophilic and electrophilic allylation.

numerous related bifunctional allylmetal reagents based on tin,
boron, or silicon have been described,'® the use of such
reagents for pyrrolidine synthesis is uncommon and is only
known in the context of Trost’s pioneering work on imine-
mediated trimethylenemethane (TMM) cycloadditions.'*'"'*
Catalytic enantioselective cycloadditions of this type have been
reported using phosphoramidite-modified palladium cata-
lysts."' ™" However, while high enantioselectivities are
observed in TMM cycloadditions of aryl-substituted imi-
nes,''“° the construction of 2-alkyl-4-methylenepyrrolidines in
highly enantiomerically enriched form remains a largely unmet
challenge. Here, utilizing an iridium catalyst modified by an
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inexpensive, commercially available ligand, SEGPHOS, we
report a catalytic protocol for the synthesis of diverse 2-
substituted-4-methylenepyrrolidines, including 2-alkyl deriva-
tives, that avoids the use of moisture-sensitive imine reactants.

In an initial experiment, 4-bromobenzyl alcohol 1a (100 mol
%) was exposed to bis-Boc-carbonate 2a'” (200 mol %) in the
presence of the z-allyliridium C,0-benzoate complex derived
from 4-cyano-3-nitrobenzoic acid and (S)-DM-SEGPHOS and
K,PO, (100 mol %) in DME (0.4 M) at 80 °C. The
homoallylic alcohol 3a was generated in 58% yield and 89% ee
(Table 1, entry 1). Decreased loadings of K;PO, (10 mol %)
led to a higher isolated yield of 3a (Table 1, entry 3). Different
chiral phosphine ligands were evaluated (Table 1, entries 6—
9). Optimal enantioselectivities were obtained using (S)-DM-
SEGPHOS or (S)-SEGPHOS (Table 1, entries 3 and 9). It
was found that a slight decrease in reaction temperature (70
°C) improved enantioselectivity without diminishing the
isolated yield of 3a (Table 1, entry 11). Similar efficiencies
were observed with the catalyst incorporating the 3,4-dinitro-
C,0-benzoate moiety (Table 1, entry 12).

As 3,4-dinitrobenzoic acid is commercially available (and 4-
cyano-3-nitrobenzoic acid is not), the optimized conditions
employing (S)-Ir-III (Table 1, entry 12) were applied to the
coupling of alcohols 1a—j with bis-Boc-carbonate 2a (Scheme
1). Benzylic alcohols la—e, the allylic alcohol geraniol 1f, and
aliphatic alcohols 1g—j delivered the respective adducts 3a—j
in good yield with excellent levels of enantioselectivity. The
absolute stereochemistry of adducts 3a—j was assigned in
analogy to adduct 3i, which was determined by single-crystal
X-ray diffraction analysis. The conversion of alcohols 1a—j to
adducts 3a—j represents redox-neutral processes. As illustrated
by the conversion of aldehydes dehydro-le, dehydro-1f, and
dehydro-1h to adducts 3e, 3f, and 3h, 2-propanol-mediated
reductive couplings of aldehyde reactants also proceed
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Table 1. Selected Optimization Experiments in the
Enantioselective Coupling of Alcohol 1a and bis-Boc-
carbonate 2a via Alcohol-Mediated Hydrogen Transfer?

OH catalyst (5 mol %) OH
OB
R BocO OBoc  KsPO, DME (0.4 M) R/kk oc
1a, R = p-BrPh 2a T°C 3a
(100 mol %) (200 mol %)
entry catalyst T°C  K3PO4 (mol %)  yield (%) ee (%)

1 (S)-Ir-ll 80 100 58 89
2 (S)-r-l 80 50 69 90
3 (S)-Ir-ll 80 10 76 90
4 (S)-Ir-l 80 5 59 90
5 (S)-Ir-ll 80 0 Trace -
6 (S)-Ir-lv 80 10 48 65
7 (S)-Ir-v 80 10 43 55
8 (S)-Ir-VI 80 10 53 69
9 (S)-r-1 80 10 66 90
10 (S)-Ir-l 60 10 70 98
" (S)-Ir-ll 70 10 77 96
12 (8-l 70 10 76 96

RES :,': L e
— I, - ST
<0° 7= /i ° e MeO——="7 th °
[ )’ go
(S)-SEGPHOS (S)-BINAP (S)-Cl,MeO-BIPHEP
R
NO,

(S)r, Ar=Ph, R=CN
(SHIr-1I, Ar = 3,5-Me,Ph, R = CN
(S)Ir-Ill, Ar = 3,5-Me,Ph, R = NO,

NO,
(S)-Ir-IV, Ar = Ph (S)-Ir-vi
(S)-Ir-V, Ar = 4-MePh

“Yields are of material isolated by silica gel chromatography.
Enantioselectivities were determined by chiral stationary-phase
HPLC analysis. See the Supporting Information for further
experimental details.

Scheme 1. Redox-Neutral Coupling of Alcohols 1a—j with
bis-Boc-carbonate 2a To Form Adducts 3a—j“
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“Yields are of material isolated by silica gel chromatography.
Enantioselectivities were determined by chiral stationary-phase
HPLC analysis. For compounds 3a, 3b, and 3d, (S)-Ir-II was used
as catalyst. See the Supporting Information for further experimental
details.

efficiently with high levels of enantioselectivity under identical
conditions (Scheme 2).

Scheme 2. Reductive Coupling of Aldehydes dehydro-1e,
dehydro-1f, and dehydro-1h with bis-Boc-carbonate 2a To
Form Adducts 3e, 3f and 3h”
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“Yields are of material isolated by silica gel chromatography.
Enantioselectivities were determined by chiral stationary phase
HPLC analysis. See the Supporting Information for further
experimental details.

Scheme 3. Conversion of Adducts 3a—j to 4-
Methylenepyrrolidines Sa—j via Tsuji—Trost Allylation—
Mitsunobu Cyclization”
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“Yields are of material isolated by silica gel chromatography. See the
Supporting Information for further experimental details.

The conversion of adducts 3a—j to the 2-substituted 4-
methylenepyrrolidines Sa—j was achieved via Tsuji—Trost
allylation followed by Mitsunobu cyclization (Scheme 3).
Whereas Tsuji—Trost allylation of p-nitrobenzenesulfonamide
resulted in significant quantities of overalkylation, correspond-
ing reactions of o-nitrobenzenesulfonamide were more
selective, providing the hlghly tractable o-nosyl-containing
adducts 4a—j in good yield.'* Cyclization of adducts 4a—j
under Mitsunobu conditions proceeded smoothly to deliver
the 2-substituted 4-methylenepyrrolidines 5a—j.'> The enan-
tiomeric purity of 2 pyrrolidines 5d and Sj was evaluated,
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which revealed no erosion in enantiomeric purity occurred
upon Mitsunobu cyclization.

Scheme 4. Derivatization of 4-Methylenepyrrolidines 5d
and Sh”
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“Yields are of material isolated by silica gel chromatography. See the
Supporting Information for further experimental details.

To illustrate the utility of 4-methylenepyrrolidines Sa—j,
compounds 5d and Sh were subjected to a series of functional
group manipulations (Scheme 4). The synthesis of carbox-
amide 7d from compound 5d demonstrates facile removal of
the o-nosyl protecting group and corroborates the anticipated
inversion of stereochemistry in the Mitsunobu cyclization."® 4-
Methylenepyrrolidine Sh is readily converted to the
spirocyclopropane 6h,'® which embodies a structural motif
evident in an FDA-approved drug for the treatment of hepatitis
C." Finally, oxidative cleavage'® of 4-methylenepyrrolidine Sh
followed by exposure of the resulting ketone 7h to Deoxy-
Fluor'” delivers the gem-difluoride 8h.

In conclusion, we report enantioselective syntheses of 2-
substituted-4-methylenepyrrolidines through successive nucle-
ophilic and electrophilic allylations of bis-Boc-carbonate 2a.
Whereas prior methods for the enantioselective synthesis of 2-
substituted-4-methylenepyrrolidines involve TMM cycloaddi-
tions of moisture-sensitive imine reactants and are largely
restricted to 2-aryl-substituted adducts, the present protocol
enables facile access to both 2-aryl- and 2-alkyl-4-methyl-
enepyrrolidines from highly tractable primary alcohol reac-
tants.
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