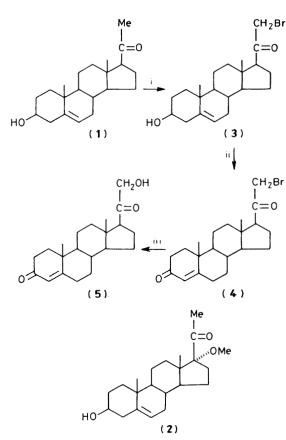
127

A Facile Synthesis of Deoxycorticosterone using the Controlled Alkaline Hydrolysis of 21-Bromo-20-ketopregnenes

Mitsuteru Numazawa* and Masao Nagaoka

Tohoku College of Pharmacy, Komatsushima, Sendai, Miyagi 983, Japan


A novel synthesis of deoxycorticosterone (5) has been accomplished using the controlled alkaline hydrolysis of 21-bromopregn-4-ene-3,20-dione (4), obtained by the direct bromination of 3β -hydroxypregn-5-en-20-one (1) with CuBr₂ in the presence of pyridine, followed by oxidation with 2.67 M CrO₃ and subsequent acid-treatment.

Introduction of the 21-oxygen function into the 17β -acetyl side-chain of pregnenes is of central importance in the partial synthesis of corticoids. Probably the most widely used method for this synthesis involves the halogenation of 20-ketopregnenes, followed by displacement of 21-halides by acetate.¹ From observations on the bromination of 3β -hydroxypregn-5-en-20-one (1) with common reagents (e.g., Br_2^{-1} or $CuBr_2^{-2}$), it has been considered impossible to obtain the 21-bromide (3) from the 20-ketone (1) directly. Moreover, efficient displacement of the bromo-group of a 21-bromo-20-ketone by a hydroxy-group has not been achieved probably owing to the Favorskii rearrangement³ involved in the reaction and the sensitivity of the product, 21-hydroxy-20-ketone, to basic reagents. We now report a novel synthesis of deoxycorticosterone (5) which involves the direct bromination at C-21 of the 20-ketone (1) and the subsequent alkaline hydrolysis of the 21-bromide (3) under the controlled conditions⁴ which we recently discovered and utilized in the synthesis of 16ahydroxy-17-keto- and 2\alpha-hydroxy-3-keto-steroids.

Treatment of 20-ketopregnene (1) with $CuBr_2$ (3 mol. equiv.,^{4e} dry MeOH, reflux, 24 h) gave 3β -hydroxy- 17α -

methoxypregn-5-en-20-one (2) as reported² but with an improved yield (65%). In contrast, when the 20-ketone (1) was treated with the brominating agent as above but in the presence of pyridine (3 equiv.), instead of producing a higher yield of the methoxide (2) analogous to the results of Sollman and Dodson,⁵ the 21-bromide (3) [m.p. 156-158 °C (lit.⁶ m.p. 159—159.5 °C); ¹H n.m.r. δ (CDCl₃) 0.67 (3H, s, 3 × 18-H), 1.62 (3H, s, 3 \times 19-H), 3.50 (1H, m, 3 α -H), 3.92 (2H, s, 2 \times 21-H), 5.38 (1H, m, 6-H); v_{max} (KBr) 1719 cm⁻¹; m/z 394 and 396 (M^+)], was obtained regioselectively in 71 % yield without the formation of the methoxide (2). This is the first direct bromination at C-21 of the 20-ketone (1) without affecting the integrity of the isolated double bond at C-5. This is a surprising result, in view of the usual reaction pathway of bromination with CuBr2² or Br2,¹ and can be explained by the base functioning analogously to CaO⁷ and probably promoting enolization, in the Hofmann sense, toward C-21.

The completion of a 21-hydroxy-20-one side-chain was accomplished by the use of an interesting reaction, the controlled alkaline hydrolysis⁴ of the corresponding 21-bromo-20-one. When the bromoketone (4) [m.p. 184–185 °C (lit.⁶ m.p.

Scheme 1. Reagents: i, CuBr₂, pyridine, MeOH; ii, 2.67 \times CrO₃, acetone and then toluene-*p*-sulphonic acid, acetone; iii, NaOH and aqueous DMF or K₂CO₃ and aqueous acetone.

190—191 °C); ¹H n.m.r. δ (CDCl₃) 0.70 (3H, s, 3 × 18-H), 1.18 (3H, s, 3 × 19-H), 3.90 (2H, s, 2 × 21-H), 5.73 (1H, s, 4-H), v_{max} (KBr) 1718, 1660 cm⁻¹], obtained by oxidation of the

J. CHEM. SOC., CHEM. COMMUN., 1983

bromide (3) with 2.67 M CrO₃ and subsequent treatment with toluene-*p*-sulphonic acid, was treated with NaOH [1.2 equiv., 67% aqueous dimethylformamide (DMF),^{4e} room temp., 30 min] or $K_2CO_3^{4c}$ (1 mol. equiv., 60% aqueous acetone, reflux, 1 h), deoxycorticosterone (5), m.p. 139—140 °C (lit.⁸ 141—142 °C), was obtained in 85—95% yield. The ketol (5) was identical with the natural product in every respect and the overall yield, without purification and isolation of intermediates, was *ca*. 55%.

The obvious advantages of this sequence are that the 3β -hydroxy-5-ene system does not interfere with the reaction and a 21-bromo-20-ketone can be converted directly into the corresponding 21-hydroxide. 11-Deoxycortisol having a di-hydroxyacetone side-chain has also been efficiently obtained (70%) by the controlled alkaline hydrolysis of 21-bromo-17 α -hydroxypregn-4-ene-3,20-dione.

We thank Dr. Toshio Nambara for mass spectra.

Received, 24th September 1982; Com. 1128

References

- For a review see E. P. Oliveto in 'Organic Reactions in Steroid Chemistry,' vol. II, eds. J. Fried and J. A. Edwards, Van Nostrand Reinhold, New York, 1972, pp. 127-217.
- 2 E. R. Glazier, J. Org. Chem., 1962, 27, 4397.
- 3 D. N. Kirk and M. P. Hartshorn in 'Steroid Reaction Mechanisms,' Elsevier, Amsterdam, 1968, p. 388.
- 4 (a) M. Numazawa and Y. Osawa, J. Am. Chem. Soc., 1980, 102, 5402; (b) M. Numazawa, K. Kimura, and M. Nagaoka, Steroids, 1981, 38, 557; (c) M. Numazawa and M. Nagaoka, Steroids, 1982, 39, 345; (d) M. Numazawa, M. Nagaoka, M. Tsuji, and Y. Osawa, J. Chem. Soc., Chem. Commun., 1981, 383; (e) M. Numazawa, M. Nagaoka, and Y. Osawa, J. Org. Chem., 1982, 47, 4024.
- 5 P. B. Soliman and R. M. Dodson, J. Org. Chem., 1961, 26, 4180.
- 6 H. Reich and T. Reichstein, Helv. Chim. Acta, 1939, 22, 1124.
- 7 H. J. Ringold and G. Stork, J. Am. Chem. Soc., 1958, 80, 250.
- 8 T. Reichstein, Swiss Patent No. 235,191, 1945 (Chem. Abstr., 1949, 43, 7056h).