Tetrahedron Letters 56 (2015) 1041-1044

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

CrossMark

Toward the synthesis of brevipolide H

Debendra K. Mohapatra*, Suresh Kanikarapu, P. Ramesh Naidu, Jhillu S. Yadav

Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 5000 007, India

ARTICLE INFO

Article history: Received 18 November 2014 Revised 24 December 2014 Accepted 26 December 2014 Available online 3 January 2015

Keywords:

Jørgensen's asymmetric epoxidation Palladium-catalyzed regioselective opening of epoxide Charette's modified Simmons-Smith cyclopropanation *anti*-Selective reduction Brown allylation Ring-closing metathesis

ABSTRACT

A linear diastereoselective synthesis of C_1-C_{12} fragment of brevipolide H is described. The key reactions include Jørgensen's asymmetric epoxidation, palladium-catalyzed regioselective opening of α , β -unsaturated γ , δ -epoxide, Charette's modified Simmons–Smith cyclopropanation, *anti*-selective reduction of cyclopropyl containing α , β -unsaturated ketone, Brown allylation, and ring-closing metathesis reaction. © 2015 Elsevier Ltd. All rights reserved.

In 2009, Douglas Kinghorn,¹ isolated brevipolides A–F from the entire plant of *Hyptis brevipes*, an invasive plant species which belongs to the genus *Hyptis* (Lamiaceae), distributed mainly in the tropical region around the world. Recently, Miranda² and co-workers also isolated related compounds brevipolides A–J (Fig. 1) from the same species and the absolute configuration was assigned as 5*R*, 6*S*, 7*S*, 9*S*, and 11*S* which was confirmed by the combination of X-ray diffraction analysis, chiroptical measurements, chemical correlations, and Mosher's ester analysis. The structural features of the brevipolides A–J family contain the cyclopropyl group attached to β -substituted cinnamylcarboxyketo unit on one side and on the other side a hydroxymethine containing an unsaturated δ-lactone. Brevipolides (A–J) showed excellent biological activity which includes inhibitory activity against bacterial, fungal growth, DNA intercalation activity, cytotoxicity against HT-29 and the MCF-7 human breast cancer cell line. In particular, compounds **7**, **8**, and **9** were isolated from Peruvian plant *Lippia alva* sp. (Verbenaceae),³ which was identified as an inhibitory of chemokine receptor 5 (IC₅₀ values CCR5, IC₅₀ = 5.5, 6.0 and 7.2 µg mL⁻¹) and it leads for inhibiting HIV infection. Additionally, Compound **7** was also found to be active in an enzyme-based ELISA NF- κ B assay.

Figure 1. Structure of brevipolides A-J.

http://dx.doi.org/10.1016/j.tetlet.2014.12.125 0040-4039/© 2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +91 40 27193128; fax: +91 40 27160512. *E-mail address:* mohapatra@iict.res.in (D.K. Mohapatra).

Scheme 1. Retrosynthesis of brevipolide H (8).

The attractive structural features and the versatile biological profiles showing significant activity prompted us to initiate the synthesis of brevipolide H (**8**).

As a part of our work, the synthesis of novel biologically active compounds,⁴ we have ventured into the total synthesis of pharma-cological active cyclopropane containing natural products.

Very recently, Hou and co-workers reported the total synthesis of *ent*-brevipolide H and Kumaraswamy et al. reported the studies toward diastereoselective synthesis of derivative of 11'-*epi*-brevipolide H.⁵ Herein, we report a diastereoselective synthesis of C_1-C_{12} fragment of brevipolide H. According to our retrosynthetic analysis of brevipolide H (**8**) as illustrated in Scheme 1, the lactone **11** could be achieved through ring-closing metathesis reaction of corresponding diolefinic ester. Fragment **12** could be obtained by Charette's modified Simmons–Smith cyclopropanation from olefin fragment **13**, which in turn could be derived from commercially available achiral starting material *trans*-crotonaldehyde **14**.

The synthesis of lactone fragment **11** began with commercially available trans-crotonaldehyde 14. Following Jørgensen's chiral epoxidation⁶ protocol aldehyde **14** was enantioselectively epoxidized by using (S)-(-)- α,α -diphenyl-2-pyrrolidinemethanol trimethylsilyl ether as the chiral catalyst to afford chiral epoxide followed by two carbon homologation using stable Wittig ylide to form α , β -unsaturated epoxy ester **15** in 78% yield over two steps with dr 95:5 (by ¹H NMR analysis) and with 93:7 enantiomeric ratio (by HPLC). Palladium(0) catalyzed regioselective opening of the resulting epoxide compound **15** by *p*-methoxy benzyl alcohol afforded secondary homoallylic alcohol **16** in 96% yield.⁷ The secondary alcohol 16 was protected as its TBS ether using tertbutyldimethylsilyl trifluoromethanesulfonate and 2,6-lutidine as base in CH_2Cl_2 to obtain the compound **17** in 95% yield. The α,β unsaturated ester 17 was converted to primary alcohol 18 using diisobutylaluminium hydride in CH_2Cl_2 at $-78\ ^\circ C$ in 95% yield. The protection of primary alcohol 18 with tert-butylchlorodiphenylsilane resulted in TBDPS protected product 19 in 98% yield. At this stage, we performed Simmons-Smith cyclopropanation reaction but the reaction was unsuccessful. PMB-ether group in compound **19** was oxidatively cleaved by using DDO in CH₂Cl₂. pH 7 buffer solution (9:1) to obtain secondary alcohol 13 in 86% yield.⁸ Following Charette's modified⁹ Simmons–Smith cyclopropanation, treatment of allylic alcohol **13** with Et₂Zn and CH₂I₂ in CH₂Cl₂ at -78 °C afforded cyclopropyl alcohol **20** as a major diastereomer (de. 99% by HPLC) in 97% yield (Scheme 2).

Secondary alcohol **20** was protected as its MOM ether using MOM-Cl and DIPEA as a base to furnish compound **21** in 96%

Scheme 2. Reagents and conditions: (a) (i), H_2O_2 (1.3 equiv), CH_2CI_2 , rt, 24 h, $PPh_3 = CHCO_2Et$, CH_2CI_2 , 2 h, 78% (over two steps); (b) PMBOH, $Pd(PPh_3)_4$, $(PhO)_3B$, THF, 0 °C to rt, 3 h, 96%; (c) TBSOTf, 2,6-lutidine, CH_2CI_2 , 0 °C to rt, 3 d min, 95%; (d) DIBAL-H, CH_2CI_2 , -78 °C to 0 °C, 2 h, 95%; (e) TBDPSCI, imidazole, CH_2CI_2 , 0 °C to rt, 1 h, 98%; (f) DDQ, pH 7 buffer, CH_2CI_2 , 0 °C to rt, 2 h, 86%; (g) Et_2Zn , CH_2I_2 , CH_2CI_2 , -78 °C to 0 °C, 4 h, 97%.

Figure 2. $(\Delta \delta = \delta_S - \delta_R) \times 10^3$ for (*S*) and (*R*)-MTPA ester of compound **23**.

yield. Selective deprotection of 1° TBDPS ether in the presence of 2° TBS ether with NH₄F¹⁰ in methanol at 0 °C afforded primary alcohol **22** in 92% yield, which was then oxidized to aldehyde using Dess–Martin periodinane¹¹ in CH₂Cl₂ with 95% yield. The resulting aldehyde was then subjected to vinyl magnesium bromide in THF at -78 °C to afford the diastereomers **23** and **24** (dr 2:3) in 90% yield, which was easily separated by column chromatography.

Stereochemical assignment at the newly created hydroxy bearing center was confirmed by the modified Mosher's method.¹² Thus, esterification of the isomer **23** with both (*S*)- and (*R*)-methoxy- α (trifluoromethyl)phenylacetic acid (MTPA) showed positive chemical shift difference $[(\Delta \delta = \delta_S - \delta_R) \times 10^3]$ for protons on C₈ through C₉ (Fig. 2), while protons on C₁ through C₆ showed negative chemical shift differences, which is the indicative of C₇ bearing an *R*-configuration. Therefore, the absolute configuration of C₇ was assigned as *R*.

Inversion of C₇ center of isomer **24** under Mitsunobu conditions¹³ gave desired isomer **23** in low yield. To improve the yield and selectivity of required isomer, the two diastereomers were treated with Dess–Martin periodinane¹¹ in CH₂Cl₂ to afford the α,β -unsaturated ketone **12** in 93% yield (Scheme 3). Diastereoselective reduction of cyclopropyl enone **12** was screened under various reducing agents and conditions (depicted in Table 1). Among the selected reagents, lithium tri-*tert*-butoxyaluminumhydride¹⁴ in ethanol –78 °C gave the desired *anti* alcohol **23** in 94% yield as a single isomer.

Scheme 3. Reagents and conditions: (a) DIPEA, MOMCl, CH_2Cl_2 , 0 °C to rt, 12 h, 96% (b) NH₄F, MeOH, 0 °C to rt, 24 h, 92%; (c) (i) DMP, NaHCO₃, CH_2Cl_2 , 0 °C to rt, 2 h, 95%, (ii) vinylmagnesiumbromide, THF, -78 °C to rt, 2 h, 90% (d) (i) TPP, DIAD, AcOH, THF, 0 °C to rt, 12 h, (ii) K₂CO₃, MeOH, rt, 3 h, 50% over two steps; (e) DMP, NaHCO₃, CH_2Cl_2 , 0 °C to rt, 1 h, 93%.

Table 1

Hydride reduction of cyclopropyl enone **12**

Sr. no.	Conditions	23/24 ^a	Yield (%)
1	(<i>R</i>)-CBS, THF, −25 °C, 12 h	85:15	74
2	DIBAL-H, ether, -78 °C, 1 h	62:38	72
3	NaBH ₄ , CeCl ₃ ·7H ₂ O, MeOH, —78 °C, 1 h	90:10	87
4	Zn(BH ₄) ₂ , ether, -78 °C, 6 h	94:06	82
5	Li(Ot-Bu ₃)AlH, ethanol, -78 °C, 1 h	100:0	94

^a As per isolated yield.

Scheme 4. Synthesis of homo allylic alcohols **27** and **28**. Reagents and conditions: (a) TBDPSCI, imidazole, CH_2CI_2 , 0 °C to rt, 3 h, 92%; (b) OsO4, 2,6-lutidine, NaIO4, dioxane, H₂O, rt, 4 h, 76%; (c) allyl bromide, Zn dust, aq NH₄CI, -20 °C, 2 h, 76%.

The allylic alcohol **23** was protected as its TBDPS ether **25** using TBDPSCI and imidazole as base in CH₂Cl₂ at 0 °C in 92% yield. At this stage, Jin's one step dihydroxylation–oxidation protocol¹⁵ followed by Barbier's allylation¹⁶ using allyl bromide in the presence of zinc and aq NH₄Cl in THF at -20 °C furnished diastereometric homoallylic alcohols **27** and **28** (dr = 2:3) in 76% yield (Scheme 4).

Figure 3. $(\Delta \delta = \delta_S - \delta_R) \times 10^3$ for (*S*) and (*R*)-MTPA ester of compound **28**.

Scheme 5. Synthesis of lactone fragment **11**. Reagents and conditions: (a) (+)-(lpc)₂BCl, allylmagnesium bromide, Et₂O, $-90 \circ$ C, 4 h, 81%; (b) acryloyl chloride, Et₃N, cat. DMAP, 0 \circ C to rt, 0 \circ C, 2 h, 85%; (c) Grubbs 1st generation catalyst, CH₂Cl₂, 5 h, 88%; (d) PPTS, MeOH, 50 \circ C, 4 h, 81%.

After separation of both the isomers, stereochemistry of the hydroxy center in the major isomer **28** was assigned by modified Mosher's ester method¹² and was found to be unrequired (Fig. 3).

To obtain the required isomer **27** as a major product, Brown's protocol¹⁷ proved useful here. Thus, an allylating reagent ally-IB(Ipc)₂, prepared from allylmagnesium bromide and (+)-DIP-CI (diisopinocampheylboron chloride), reacted with aldehyde **26** in anhydrous ether at -90 °C furnished the desired homo allylic alcohol **27** and **28** in 81% yield with high diastereoselectivity (85:15), in favor of the required isomer **27**. The alcohol **27** was acrylated with acrolyl chloride, Et₃N as base and catalytic amount of DMAP in CH₂Cl₂ at 0 °C to give the acrylated product **29** in 85% yield. Ring-closing metathesis of acryloyl ester **29** was achieved smoothly with 10 mol % of Grubbs 1st generation catalyst under refluxing conditions in CH₂Cl₂ for 5 h to furnish **30** in 88% yield.¹⁸

Selective desilylation of TBS ether in the presence of TBDPS ether using PPTS¹⁹ in MeOH under refluxing conditions afforded fragment 11^{20} in 81% yield (Scheme 5). To achieve the complete synthesis of brevipolide H, we performed the standard Mitsunobu protocol conditions to couple *p*-methoxy cinnamic acid and alcohol **11**. Unfortunately, the reaction was unable to give the desired inverted product.¹³

In summary, a linear diastereoselective synthesis of $C_{1-}C_{12}$ fragment of brevipolide H was synthesized in 18 steps with 12.5% overall yield, starting from commercially available *trans*-crotonal-dehyde. Efforts to complete the total synthesis of brevipolide H are in progress and will be reported in due course.

Acknowledgments

The authors thank CSIR, New Delhi, India for financial support as part of XII Five Year plan programme under title ORIGIN (CSC-0108). K.S. and P.R.N. thank Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance in the form of fellowships.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.12. 125.

References and notes

- Deng, Y.; Balunas, M. J.; Kim, J.-A.; Lantvit, D. D.; Chin, Y.-W.; Chai, H.; Sugiarso, S.; Kardono, L. B. S.; Fong, H. S.; Pezzuto, J. M.; Swanson, S. M.; Carcache de Blanco, E. J.; Kinghorn, A. D. J. Nat. Prod. 2009, 72, 1165.
- Suárez-Ortiz, G. A.; Cerda-García-Rojas, C. M.; Hernández-Rojas, A.; Pereda-Miranda, R. J. Nat. Prod. 2013, 76, 72.

- 3. Hegde, V. R.; Pu, H.; Patel, M.; Das, P. R.; Strizki, J.; Gullo, V. P.; Chouan, C. C.; Buevich, A. V.; Chan, T.-M. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 5339.
- (a) Mohapatra, D. K.; Datta, A. J. Org. Chem. **1998**, 63, 642; (b) Varadarajan, S.; Mohapatra, D. K.; Datta, A. Tetrahedron Lett. **1998**, 39, 5667; (c) Varadarajan, S.; Mohapatra, D. K.; Datta, A. Tetrahedron Lett. **1998**, 39, 1075; (d) Mohapatra, D. K.; Nagesh, G.; Yadav, J. S. Tetrahedron Lett. **2012**, 53, 6718.
- (a) Lin, J.-W.; Kurinawan, Y. D.; Chang, W.-J.; Leu, W.-J.; Chan, S.-H.; Hou, D.-R. Org. Lett. 2014, 16, 5328; (b) Kumaraswamy, G.; Jayaprakash, N.; Rambabu, D.; Ganguly, A.; Banerjee, R. Org. Biomol. Chem. 2014, 12, 1793.
- Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964.
- Yu, X. Q.; Yoshimura, F.; Ito, F.; Sasaki, M.; Hirai, A.; Tanino, K.; Miyashita, M. Angew. Chem., Int. Ed. 2008, 47, 750.
- (a) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, 23, 885; (b) Mohapatra, D. K.; Bhimireddy, E.; Rao, P. S. R. K.; Das, P. P.; Yadav, J. S. *Org. Lett.* **2011**, 4, 744.
- (a) Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966; (b) Label, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977; (c) Simmons, H. E.; Smtih, R. D. J. Am. Chem. Soc. 1958, 180, 5323.
- (a) Guindon, Y.; Fortin, R.; Yoakim, C.; Gillard, J. W. Tetrahedron Lett. **1984**, 25, 4717; (b) Zhang, W.; Robins, M. J. Tetrahedron Lett. **1992**, 33, 1177; (c) BouzBouz, S.; Cossy, J. Org. Lett. **2003**, 5, 3029.
- (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155; (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
- (a) Ohtani, I.; Kusumi, J.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092; For determination of the absolute stereochemistry of secondary/ secondary diols by modified Mosher's method, see: (b) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. J. Org. Chem. 2005, 70, 3778.
- (a) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1967, 40, 935; (b) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380; (c) Macor, J. E.; Wehner, J. M. Heterocycles 1993, 35, 349; (d) Smith, A. B., III; Vladimir, S. Org. Lett. 2006, 8, 3315.

- (a) Hakogi, T.; Fujii, S.; Morita, M.; Ikeda, K.; Katsumura, S. *Bioorg. Med. Chem. Lett.* 2005, *15*, 2141; (b) Hofmann, R. V.; Maslouh, N.; Lee, F. C. *J. Org. Chem.* 2002, 67, 1045; (c) Yamamoto, T.; Hasegawa, H.; Hakogi, T.; Katsumura, S. *Org. Lett.* 2006, *8*, 5569.
- (a) Yu, W.; Mei, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217; (b) Chakraborthy, T. K.; Chattopadhyay, A. K. J. Org. Chem. 2008, 73, 3578; (c) Trotter, T. N.; Alburry, A. M. M.; Jennings, M. P. J. Org. Chem. 2012, 77, 7688.
- (a) Yavari, I.; Riazi-Kermani, F. Synth. Commun. 1995, 25, 2923; (b) Chattopadhyay, A.; Dhotare, B. Tetrahedron: Asymmetry 1998, 9, 2715.
- (a) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401; (b) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570; (c) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092; (d) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
- (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413; (b) Armstrong, S. K. J. Am. Chem. Soc., Perkin Trans. 1 1998, 371; (c) Furstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013.
- (a) Prakash, C.; Saleh, S.; Blair, I. A. *Tetrahedron Lett.* **1989**, *30*, 19; (b) Williams,
 D. R.; Clark, M. P.; Emde, U.; Berliner, M. A. Org. Lett. **2000**, *2*, 3023; (c) Liu, P.;
 Panek, J. S. J. Am. Chem. Soc. **2000**, *122*, 1235.
- 20. Spectral data of compound 11: $[\alpha]_{2}^{25}$ +32 (c 0.3, CHCl₃); IR (KBr): 2927, 2855, 1726, 1464, 1385, 1254, 1108 cm⁻¹; ¹H NMR (500 MHz, CDCl₃); δ 7.78–7.73 (m, 4H), 7.49–7.35 (m, 6H), 6.96–6.90 (m, 1H), 6.01 (dd, *J* = 9.7, 2.5 Hz, 1H), 4.50 (d, *J* = 6.5 Hz, 1H), 4.46 (dt, *J* = 11.7, 2.8 Hz, 1H) 4.38 (d, *J* = 6.5 Hz, 1H), 3.42–3.33 (m, 2H), 3.33 (s, 3H), 2.96–2.86 (m, 1H), 2.76 (dd, *J* = 6.4 Hz, 3H), 0.56–0.49 (m, 1H), 0.030–0.23 (m, 1H), 0.15–0.10 (m, 1H); ¹³C NMR (125 MHz, CDCl₃); δ 163.9, 145.2, 136.0, 135.8, 130.0, 129.7, 127.8, 127.6, 121.0, 97.4, 83.8, 80.7, 76.9, 70.0, 55.6, 26.8, 23.6, 19.6, 18.6, 18.1, 16.4, 5.1; HRMS (ESI) *m/z*: calcd for C₃₀H₄₁0, Si [M+H]*.522.2666; found: 525.2676.