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Abstract: Substituted cis-4,5-diarylazepanes are synthesized in
modest overall yields starting from 5,5-diarylazepan-4-ones by a
reduction, mesylation, rearrangement, and hydrogenation reaction
sequence.
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The seven-membered azepane ring is a prevalent scaffold
that serves as a crucial building block for numerous syn-
theses of useful compounds, and it has been previously re-
viewed.1 Depending on the substitution pattern and
functionalization, different derived substitutents in the
structural skeleton of azepane have been shown to be ef-
fective biologically active compounds, such as benz-
azepine or phenazepane analogues.2,3 Consequently, a
significant effort has been directed toward the develop-
ment of new methods for the synthesis of substituted
azepanes.4 In addition, the chiral azepane system can be a
synthetically useful ligand in the asymmetric reactions.5

Due to the particular pharmaceutical interest concerning
specific substitution pattern of the great number of
azepanes and their derivatives, new methods for their
preparation are needed. The adopted synthetic strategies
of substituted azepanes are summarized in Figure 1.5–7 In
this paper, we intend to report the 1,2-sigmatropic shift
methodology for the synthesis of substituted cis-4,5-di-
arylazepanes from known 5,5-diarylazepan-4-ones.

Figure 1 Synthetic strategies toward substituted azepane

The synthesis of substituted 5,5-diarylazepan-4-ones 2
started with tetrasubstituted exo-olefins 1 via ring expan-
sion with MCPBA and BF3⋅OEt2. Skeleton 1 was easily
yielded from commercially available piperidine-4-car-
boxylic acid ethyl ester via sulfonylation with sulfonyl
chloride, Grignard addition with arylmagnesium bromide,
and dehydration. Skeleton 2 was chosen as the starting
material for synthesizing substituted cis-4,5-diaryl-
azepanes, as shown in Scheme 1.8

Scheme 1 Synthesis of starting material 2

Initially, the azepanol 3c was prepared by reduction of
model substrate 2c (Ar1 = Ar2 = Ph; R = Ts) with sodium
borohydride in methanol at room temperature for 2–3
hours in 89% yield. As shown in Table 1, treatment of
azepanol 3c with MsCl (3.0 equiv) and Et3N (alkylamine)
in DCE (10 mL) generated a mixture of mesylate 4c and
olefin 1c. After adjusting the reaction temperature, time
and equivalents of Et3N, two products (4c/1c = 7:1 to 2:1)
were isolated from the reaction mixture (Table 1, entries
1–4). Under the reflux temperature and prolonged time (5
h or 30 h), compound 1c was yielded as the major product
(Table 1, entries 5 and 6). This showed that higher tem-
perature prompted the in situ rearrangement to occur and
controlled the yield ratios of major product 1c. To in-
crease the yield ratio of compound 4c, other bases with
different basicity were examined in the next step. Mesyla-
tion of azepanol 3c with 5 equivalents of DBU (amidine)
gave 1c as the major product (4c/1c = 1:6) at room tem-
perature (Table 1, entry 7). When pyridine or imidazole
(aromatic amine) was chosen as the base or solvent (for
pyridine) at room temperature, the major product 4c was
isolated in good yields along with a trace amount of rear-
ranged product 1c (Table 1, entries 8–10).

With the above results, compounds 4a,b and 4d–h were
also isolated in 82–92% yields under the conditions in en-
try 10 (Table 1). By treating the mesylate 3c with different
bases (alkyl amine, amidine, aromatic amine), we ob-
served that there was an interesting selectivity for the dis-
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tribution of product yields between the piperidine and the
azapane frameworks.

As shown in Table 2, the 1,2-sigmatropic rearrangement
of skeleton 4 (R = Ms, Bs, Ts; Ar = Ph, 4-FC6H4, 4-
MeOC6H4) with BF3·OEt2 (2.0 equiv) gave skeleton 5 as
the major product at reflux for 40 hours.9 The 1,2-sigma-
tropic shift procedure was monitored using TLC until the
reaction was complete. Eight olefins, 5a–h, were obtained
in 55–89% yields. The structural frameworks of com-
pounds 5b and 5e were determined using single-crystal X-
ray analysis.10 Furthermore, cis-4,5-diarylazepanes 6a–h
were achieved by hydrogenation of skeleton 5 with hydro-

gen in the presence of a catalytic amount of 10% palladi-
um on activated carbon at room temperature for 10 hours.
After completing the above procedures, the vicinal cis-
4,5-diarylazapane 6 was synthesized from the geminal
5,5-diarylazapan-4-one 2 in a modest total yield via re-
duction, mesylation, the 1,2-sigmatropic shift, and the hy-
drogenation reaction. Our typical experimental procedure
suggested a general and efficient alternative for the prep-
aration of symmetrical and unsymmetrical cis-4,5-diaryl-
azepanes with the different electron-withdrawing and
electron-donating aryl groups. Comparing the two kinds
of products (e.g., Ar1 = Ar2 = Ph, R = Ts), we found that
six-membered piperidine 1c with a geminal diaryl exo-
olefin was the major product generated from the treatment
of alcohol 3c with Et3N under the basic conditions
(Scheme 2). Under the Lewis acid promoted reaction, me-
sylate 4c was easily converted into seven-membered
azapane 5c with vicinal diaryl endo-olefin.

The possible explanation for the interesting transforma-
tions from compound 4c to 5c was that the BF3·OEt2-
mediated demesylation of compound 4c was controlled by
the lone nitrogen pair on the azepane skeleton. The initial
event may be the formation of intermediate I. Next, inter-
mediate II was formed by an intramolecular ring closure
of intermediate I and followed by the aryl group 1,2-shift
of intermediate II. Then, compound 5c was obtained by
the proton abstraction of intermediate II under thermody-
namic control. In another pathway, intermediate III
would be first generated by the mesylation of compound
3c. Furthermore, compound 1c was easily formed by the
migration of the alkyl group under the base-induced con-
ditions via intermediate IV with a more stable diphenyl
carbocation.

It was also found that spiropieridine 7a or 7b was obtained
in low yields (34% and 26%) via the reaction of ketone 2a
or 2b with Et3N (5 equiv) in CH2Cl2 for 25 hours under re-
flux conditions.11 Among the product mixtures, starting
materials 2a and 2b were recovered in nearly 56% and
66% yields. As shown in Scheme 3, the ring system with
the five-membered dioxa spiropiperidine skeleton was

Table 1 Reaction of Alcohol 3c with MsCla

Entry Base Temp Time 
(h)

Yield of 
4c (%)b

Yield of 
1c (%)b

1 Et3N (3.0 equiv) ice bath 5 72 10

2 Et3N (3.0 equiv) r.t. 5 62 15

3 Et3N (3.0 equiv) r.t. 30 47 31

4 Et3N (5.0 equiv) r.t. 30 50 24

5 Et3N (5.0 equiv) reflux 5 15 69

6 Et3N (5.0 equiv) reflux 30 trace 82

7 DBU (5.0 equiv) reflux 5 10 63

8 pyridine (5.0 equiv) r.t. 5 86 trace

9 imidazole (5.0 equiv) r.t. 5 81 trace

10 pyridine (6 mL) r.t. 5 90 trace

a The reactions were run on a 0.5 mmol scale with 3c.
b The products were >95% pure as determined by 1H NMR analysis.
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found in the presence of CH2Cl2. The possible mechanism
is as follows: the initial event was regarded as the forma-
tion of intermediate A with an oxonium ion with chloro-
methyl motif;12 intermediate B with diphenyl carbocation
was generated via the rearrangement. The intermediate A
should be generated from reaction of ketone 2 with the

chloromethyl quaternary ammonium chloride under high-
pressure conditions in a sealed tube. Thus, skeleton 7 was
afforded by water addition followed by the intramolecular
ring closure.

Table 2 Synthesis of Substituted cis-4,5-Diarylazepanes 6a 

Entry Product 5 Yield of 5 (%)a Product 6 Yield of 6 (%)a

1
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To increase the yield of skeleton 7, reaction of ketone 2a
with diiodomethane or dibromomethane and Et3N was
further examined. But the desired spiro product 7a was
isolated in low yield (15% or 10%). The structural frame-
work of compound 7b was established by single-crystal
X-ray analysis (Figure 2).10 This study showed that the
present synthetic approach could construct the spiro [4.5]-
ring system from an azepanone skeleton.13

Attempts to establish the tetracyclic skeleton 8 via the tri-
fluoroacetic acid mediated ring closure of skeleton 514

failed, perhaps due to insufficient reactivity. In order to
construct the phenanthrene system, photolysis of skeleton
5 was further examined in different solvents (e.g., metha-
nol, benzene, ethyl acetate, tetrahydrofuran) and wave-
lengths (e.g., l = 3600, 3060, 2540 nm).15 When ethyl
acetate and l = 3060 nm were chosen as the solvent and

6

5f

59

6f

93

7

5g

55

6g

90

8

5h

67

6h

92

a The isolated products were >95% pure as judged by 1H NMR analysis.

Table 2 Synthesis of Substituted cis-4,5-Diarylazepanes 6a  (continued)
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wavelength, respectively, under the irradiation condi-
tions, we found that a single tetracyclic azacyclohep-
ta[l]phenanthrene skeleton 8 was isolated in good yield, as
shown in Scheme 4.16 The structural framework of com-
pound 8b was constructed using single-crystal X-ray anal-
ysis (Figure 3).10

Scheme 4 Synthesis of tetracyclic skeleton 8

Figure 3 X-ray structure of compound 8b

In summary, we presented an easy and straightforward
synthesis of unsymmetrically cis-4,5-diarylazepanes by
the treatment of 5,5-diarylazepan-4-ones with the reduc-

tion, mesylation, rearrangement, and hydrogenation. The
tetracyclic azacyclohepta[l]phenanthrene skeleton was
synthesized. We are currently studying the scope of this
process as well as additional applications of the method-
ology to the synthesis of diarylazocane and its related de-
rivatives.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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