

Published on Web 11/29/2010

Fluoride Ion Sensing by an Anion $-\pi$ Interaction

Samit Guha and Sourav Saha*

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States

Received August 16, 2010; E-mail: saha@chem.fsu.edu

Abstract: We report the discovery of a supramolecular interaction (anion– π and charge/electron transfer, CT/ET) involving fluoride ion and π -electron deficient colorless naphthalene diimide (NDI) receptors. Strong electronic interactions between lone-pair electrons of F⁻ ion and π^* -orbitals of the NDI unit lead to an unprecedented F⁻→NDI ET event, which produces an orange colored NDI^{*-} radical anion. Further reduction of NDI^{*-} by another F⁻ ion produces a pink colored NDI²⁻ dianion, rendering NDI a colorimetric F⁻ sensor. Preorganization of two NDI units in overlapping positions using folded linkers improves their selectivity and sensitivity for the F⁻ ion significantly, allowing F⁻ detection at nM concentration in 85:15 DMSO/H₂O solutions.

The recent discovery of anion $-\pi$ interaction¹ – a noncovalent interaction between an anion and an electron deficient organic π -system with a strong positive quadrupole moment – has added new dimensions to recognition, sensing,² and transmembrane passage³ of anions. Myriads of anions play critical roles in chemical and biological processes, demanding continuous research in the field of anion recognition.⁴ Dunbar et al.^{2b} recently reported chromogenic anion $-\pi$ and charge transfer interactions involving halides (Cl⁻ > Br⁻ > I⁻) and electron deficient aromatic rings in organic solvents.

Herein, we present an unprecedented example of chromogenic anion— π and CT interactions involving the F⁻ ion and π -electron deficient colorless NDI receptors.^{3,5} A plethora of experimental evidence, supported by computational models, indicate that (Figure 1) NDI/F⁻ interactions facilitate an unprecedented F⁻→NDI electron transfer (ET) event, which generates an orange NDI⁺ radical anion. Excess amounts of F⁻ chemically reduces NDI⁺ further to a pink NDI² dianion. Thus, NDI/F⁻ interactions and ET events produce a two-step optical response, offering a new strategy for toxic F⁻ ion sensing.

A fluoride deficiency causes osteoporosis and poor dental health.⁶ Overexposure to F⁻ is blamed for fluorosis and osteosarcoma.⁷ The EPA-recommended F⁻ level in drinking water is 1 ppm, and over 2 ppm is considered a health-risk.⁸ The low level of F⁻ tolerance demands for a selective and sensitive F⁻ sensor. Gabbaï and others developed borane, lanthanide, and other Lewis acid based efficient, albeit disposable, F⁻ sensors.⁹ Conventional hydrogen bonded F⁻ receptors have also been reported.¹⁰ Because of the nonchromogenic nature of most Y-H···X⁻ interactions, H-bonded receptors¹⁰ rely on either adjacent chromophore units or deprotonation followed by electron delocalization to display a colorimetric response. Therefore, they cannot differentiate F⁻ from other strongly basic anions, such as AcO^- and $H_2PO_4^{-.10e}$ In contrast, the selectivity and reusability of NDI-based F⁻ sensors that exploit reversible anion $-\pi$ and CT/ET interactions distinguish them from the existing F⁻ sensors.

Figure 1. Graphical illustrations of (a) anion $-\pi$ and CT interactions between F⁻ and NDI receptor, generating fluorochromogenic response via F⁻ \rightarrow NDI ET event, (b) stepwise F⁻ recognition by preorganized receptors (PR) through (i) π -anion $-\pi$ and (ii) H-bonding interactions.

Iverson and others demonstrated that CT and π - π -stacking interactions between a colorless NDI unit and electron rich aromatic rings produce colored donor-acceptor CT complexes.⁵ We envisioned that NDI units could also bind with appropriate anions through anion- π interactions and report the binding event by generating optical signals on account of anion- \rightarrow NDI CT interactions (Figure 1). To test our hypothesis, we surveyed interactions of NDI receptors with F⁻, Cl⁻, Br⁻, I⁻, NO₂⁻, NO₃⁻, N₃⁻, PF₆⁻, AcO⁻, and H₂PO₄⁻ anions as tetra-*n*-butylammonium (TBA) salts.

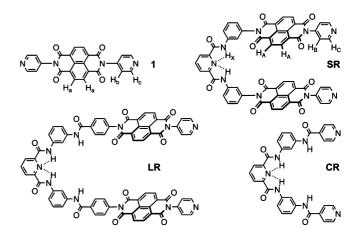
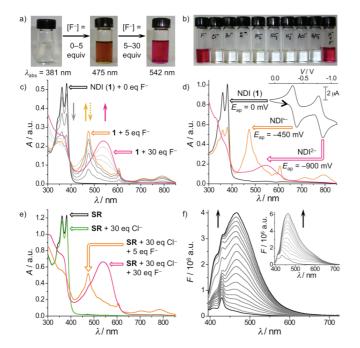



Figure 2. Molecular structures of receptors 1, SR, LR, and CR.

We further postulated that preorganization of two overlapping NDI units by connecting them with folded linkers¹¹ should improve the anion binding affinity, selectivity, and sensitivity. To investigate the effect of preorganization we designed and synthesized (Supporting Information (SI), Scheme S1) NDI receptor **1**, a short receptor (**SR**) containing a bisamide linker connecting two NDI units, a long receptor (**LR**) containing a tetraamide linker between two NDI units, and a control tetraamide receptor (**CR**) carrying no NDI unit (Figure 2). Bifurcated intramolecular H-bonds involving

the pivotal pyridine N atom and adjacent amide protons should render the bis- and tetraamide linkers folded conformations that bring two ends of receptor molecules into close proximity.¹¹ Hartree–Fock global energy minimization shows that while the short linker in **SR** brings two NDI units into a parallel overlapping orientation, the longer linker in **LR** projects two NDI units at an angle (SI, Figure S1). In addition to properly orienting NDI units, amide linkers of **SR** and **LR** provide additional anion binding sites in their cavities via H-bonding interaction.

Figure 3. Colorimetric changes of **1** (a) from colorless (no F⁻) to orange (0–5 equiv of F⁻) to pink (5–30 equiv of F⁻) and (b) by other anions (30 equiv) in DMSO. (c) UV/Vis titration of **1** (10 μ M/DMSO) with F⁻ and (d) spectroscopic changes of **1** (0.5 mM in 0.1 M TBAPF₆/DMF) upon direct electrochemical reduction in the absence of F⁻. Black trace: neutral NDI **1** ($E_{ap} = 0$ mV); orange trace: NDI⁺ ($E_{ap} = -450$ mV); and pink trace: NDI²⁻ ($E_{ap} = -900$ mV). Inset: cyclic voltammogram of **1** (vs Ag/AgCl in 0.1 M TBAPF₆/DMF) in the absence of F⁻. (e) Optical response of **SR** to F⁻ (orange and pink) in the presence of excess Cl⁻ but no change only with Cl⁻ (green vs black). (f) Fluorescence amplifications of **SR** (1 nM/DMSO); inset: **1** (10 μ M/DMSO) by F⁻ ion (0–30 equiv F⁻, $\lambda_{excitation} = 381$ nm).

The first indication of selective F^- ion sensing by **1**, **SR**, and **LR** came from visible color changes (Figure 3). While Cl⁻, Br⁻, I⁻, NO₂⁻, NO₃⁻, N₃⁻, AcO⁻, and H₂PO₄⁻ even at 30 equiv did not affect the colorless solutions of NDI-based receptors, titrations with F^- in aqueous DMSO, DMF, DMAc, MeCN, Me₂CO, and THF, containing up to 15% of H₂O, immediately changed the color in two steps (Figure 3a,b). At first, the colorless NDI solutions turned orange at lower F^- equivalents (≤ 5 equiv) and then turned pink at higher F^- equivalents (>5 equiv). NDI-free **CR** did not change color in response to any anion.

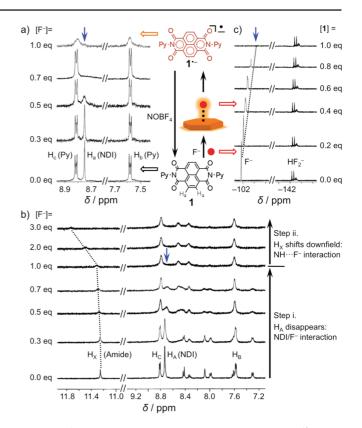
ESI-MS confirmed (SI, Figure S2) the formation of $[1 \cdot F^-]$, $[1 \cdot F^- \cdot 1]$, $[SR \cdot F^-]$, and $[LR \cdot F^-]$ complexes by revealing the corresponding peaks at m/z 439.06, 859.15, 1018.28, and 1256.27, respectively, as well as signals associated with 1, 1 \cdot 1 dimer, SR, and LR at m/z 420.23, 840.23, 999.25, and 1237.29, respectively, at F⁻ ion concentrations up to 1 equiv. At 2 equiv of F⁻ [SR \cdot 2F⁻] and [LR \cdot 2F⁻] complexes were found at m/z 518.40 and 637.70, respectively.

UV/Vis titration experiments were conducted to quantify F⁻induced colorimetric transitions of NDI receptors. Receptors **1**, **SR**, and LR display characteristic NDI absorption peaks at 343, 361, and 381 nm. Titration of 1 with 0-5 equiv of F⁻ gradually bleached NDI absorption peaks and concurrently produced new peaks at 475, 605, 711, and 791 nm, establishing a clear isosbestic point at 394 nm (Figure 3c), as the solution turned orange. The absorption spectrum of orange species generated by F⁻ (Figure 3c) matches exactly with that of an electrochemically generated NDI⁻⁻ radical anion (-450 mV vs Ag/AgCl in DMF) produced in the absence of F⁻ (Figure 3d: orange trace). Manifestations of identical spectroscopic changes with the same isosbestic point (394 nm) during F⁻ titration (Figure 3c) and during spectroelectrochemical (SEC) analysis of 1 in the absence of F⁻ (SI, Figure S3a) strongly suggest that the $F^{-} \rightarrow NDI ET$ event takes place in the NDI/ F^{-} complex. A nucleophilic attack of F⁻ on NDI forming a covalent C-F bond should have produced spectroscopic transitions different from SEC. The EPR spectrum (SI, Figure S4) of the F⁻-induced orange solution of 1 further confirms the formation of a delocalized NDI⁻⁻ radical anion (g = 2.0030). These results indicate that at first F⁻ binds with NDI through an ion $-\pi$ and CT interactions that facilitate $F^{-} \rightarrow NDI$ electron transfer and generate NDI⁻⁻ (Figure 1a).

As the solution of 1 turned from orange to pink during the titration with 5-30 equiv of the F⁻ ion, NDI⁻⁻ absorption peaks gradually disappeared concomitantly with the emergence of a broad absorption band at 542 nm. This transition at higher F⁻ equivalents can be attributed to one of the following possibilities: (a) NDI^{•-} is further reduced to NDI²⁻ dianion by another F⁻ ($E_{1/2} = -2.87$ V) or (b) NDI^{•-} is attacked by the F⁻ ion forming a C-F bond, which would be an extremely high-energy process because of electrostatic repulsions. Strong similarities between absorption spectra of the pink solution of 1 produced by excess F⁻ (Figure 3c) and electrochemically generated NDI²⁻ at -900 mV vs Ag/AgCl, DMF in the absence of F⁻ (Figure 3d, SEC, pink trace) strongly support the first scenario. A higher relative intensity of the 542 nm band of the F--induced quickly generated pink solution than that of slowly (diffusion controlled) electrochemically reduced NDI²⁻ may be attributed to degradation of reduced NDI species under the UV/ Vis light during prolonged SEC experiments. Consistent with the formation of NDI²⁻ by excess F⁻, the pink solution of 1 became EPR silent (SI, Figure S4).

The presence of the $[1 \cdot F^-]$ complex at ≤ 1 equiv of F^- suggests that NDI⁺⁻ may exist in the electron delocalized NDI/F⁻ \leftrightarrow NDI⁺⁻/ F^{*} anion- π and CT complex. In contrast, ESI-MS in the presence of excess F⁻ reveals only the $[1]^{2^-}$ dianion at m/z 210.40 but does not show any signal representing $[1/F_n]^{n^-}$ ($n \geq 1$) complexes (SI, Figure S2c). Therefore, only the first F⁻ \rightarrow NDI ET event that produces NDI⁺⁻ is facilitated by NDI/F⁻ anion- π binding, whereas the formation of NDI²⁻ with an additional F⁻ ion takes place through the direct chemical reduction of NDI⁺⁻ and not via a physical binding of F⁻ with NDI⁺⁻ due to electrostatic repulsions (Figure 1a). ESI-MS also confirms that once the NDI²⁻ dianion is formed it does not associate with F⁻ anymore.

Oxidation of orange (1^{-}) and pink (1^{2-}) solutions with NOBF₄ decolorized them. Because of strong absorptions of NOBF₄ in 350–400 nm regions, regeneration of 1 could not be confirmed by UV/Vis spectroscopy. However, ¹H NMR spectroscopy confirmed complete recovery of 1 after NOBF₄ oxidation (*vide infra*). The reversibility of NDI/F⁻ interactions further proves that these are noncovalent interactions.


Preorganized NDI receptor **SR** displayed (SI, Figure S5a) similar two-step spectroscopic changes with F^- . In addition to binding a F^- ion between two terminal NDI units, forming an NDI/ F^- /NDI sandwich complex, **SR** and **LR** can potentially bind a second $F^$ ion in the amide cavities via H-bonding interaction (Figure 1b). This interaction, however, did not produce an additional optical signal. NDI-free **CR** showed (SI, Figure S5b) a modest change in the UV region owing to NH \cdots F⁻ interaction and possible deprotonation of amide protons.

Interestingly, NDI receptors did not show any significant spectroscopic change with other anions (SI, Figure S5c), although the [1·Cl⁻] complex was found in ESI-MS (m/z 455.07).³ To investigate the selectivity and sensitivity of SR toward F-, it was titrated with F⁻ in the presence of 30 equiv of Cl⁻ (Figure 3e). While SR did not optically respond to Cl⁻, it showed the characteristic two-step color change with F⁻ even in the presence of Cl⁻, demonstrating the desired selectivity for the F⁻ ion. The selective colorimetric response of NDI receptors for F⁻ recognition compared to nonchromogenic binding of more polarized anions may be attributed to the smaller ionic radius (1.33 Å) and 2p orbital of the F⁻ ion.^{1d} These factors allow F⁻ to come into closer proximity of the NDI π -surface and engage in efficient anion- π and CT interactions through better orbital interactions with NDI π^* orbitals.^{2b} Such interactions facilitate an electron transfer from F⁻ to the NDI π -system that produces the orange NDI^{•-} radical anion. Larger size, orbital mismatch,^{1d,2b} and weaker binding of Cl⁻ and other anions^{3b} with NDI π -systems could rationalize why they do not induce visible color change.

Effects of preorganization on the sensitivity of NDI receptors were probed by monitoring the F⁻-induced fluorescence changes at the minimum receptor concentrations. The titration of **SR** (1 nM in DMSO) with F⁻ (30 nM), probed by 381 nm excitation, displayed a 4.5-fold amplification of the original 430 nm emission peak of the NDI unit and a 20-fold amplification of a new peak at 465 nm (Figure 3f). NDI **1** (10 μ M in DMSO) showed a similar fluorescence profile and 5.5-fold increase of the 465 nm emission peak (Figure 3f, inset), albeit at 10⁴ times higher concentrations than **SR**. The excellent nM sensitivity of **SR** vs weaker μ M sensitivity of **1** supports our hypothesis that preorganization of two NDI units should improve the F⁻ affinity and sensitivity through stronger NDI/ F⁻ interactions. The high F⁻ ion sensitivity of preorganized receptors (**PR**) bode well for their potential applications as F⁻ ion sensors.

¹H and ¹⁹F NMR titration experiments were conducted to gain a better insight into NDI/F⁻ interaction (Figure 4). The ¹H NMR spectrum of receptor 1 reveals a singlet at 8.75 ppm corresponding to four identical NDI core protons (H_a) and two doublets at 7.58 and 8.81 ppm corresponding to H_b and H_c of the pyridine ring, respectively (Figure 4a). During the titration of 1 with F⁻ all signals became broad but none shifted at all, virtually ruling out the possibility of a CH····F⁻ H-bond formation. Consistent with UV/ Vis results, only the H_a signal gradually disappeared as F⁻ reached 1 equiv, indicating the formation of the NDI⁻ radical anion. The EPR spectrum of this species (SI, Figure S4) confirmed the presence of the NDI⁻⁻ radical anion. NOBF₄ oxidation of the 1⁻⁻ radical anion completely regenerated 1, as the original NMR spectrum reappeared, showing the H_a signal at 8.75 ppm (SI, Figure S6). The fact that the H_a signal never splits as a result of NDI/F⁻ interactions, a sign that would have indicated a loss of symmetry of the NDI core had a covalent C-F bond formed, rule out this possibility. These results support our hypothesis that NDI/Finteractions facilitate the F⁻→NDI ET event that generates the NDI^{•-} radical anion (Figure 1a).

In **SR**, NDI core protons (H_A) and the bisamide linker (H_X) appeared at 8.73 and 11.25 ppm, respectively (Figure 4b). During the titration of **SR** with F⁻ the H_A signal gradually disappeared as the F⁻ ion concentration reached 1 equiv, while the H_X signal shifted slightly downfield, indicating that at first F⁻ binds with NDI units.

Figure 4. ¹H NMR titration of (a) **1** and (b) **SR** with F^- , and (c) ¹⁹F NMR titration of **1** with F^- showing NDI/ F^- interaction (DMSO- d_6 , 298 K). Blue arrows: signal disappearance; dotted lines: signal shift.

NDI core protons in **SR** (Figure 4b) and **LR** (SI, Figure S7a) did not split before disappearing, potentially indicating the formation of NDI/F⁻/NDI sandwich complexes in which both NDI units interact evenly with the F⁻ ion. A significant downfield shift of the H_x signal at 1–2 equiv of F⁻ indicates subsequent NH···F⁻ H-bonding interaction with amide protons. These NMR results are consistent with ESI-MS data. In addition to showing [**SR**·F⁻] and [**LR**·F⁻] complexes at ≤1 equiv of F⁻, ESI-MS of **SR** and **LR** in the presence of 2 equiv of F⁻ revealed signals that represent [**SR**·2F⁻] and [**LR**·2F⁻] complexes, respectively (SI, Figure S2d–g). These results confirm that **PR**s can bind up to two F⁻ ions. The binding of two F⁻ ions within one receptor molecule possessing two recognition sites has been reported previously.^{10a}

Thus, ¹H NMR titrations of **SR** and **LR** showing the disappearance of NDI signals before the onset of significant downfield shifts of amide signals, as well as ESI-MS showing the presence of [**PR**•2F⁻] species, suggest that the first F⁻ ion binds through NDI/ F⁻/NDI interaction and then a second F⁻ binds within the amide cavities (Figure 1b). The first **PR**/F⁻ interaction is fully reversible by NOBF₄ oxidation (SI, Figure S6b), indicating that it involves NDI/F⁻ interaction. In the presence of excess F⁻, amide protons may be deprotonated, as their NMR signals became broad and finally disappeared and NDI units were further reduced to NDI²⁻ as the solutions turned pink. No F⁻ ion should be bound with the receptors at this stage because of strong electrostatic repulsions.

¹H NMR titrations of receptor **1** with Cl⁻ and other anions did not display any change (SI, Figure S8a), confirming that NDI/Cl⁻ anion $-\pi$ interaction is weak.^{3b} It can be attributed to weaker electronic interactions of the NDI unit with larger anions compared to a stronger electronic interaction with F⁻. Titrations of receptor **1**, **SR**, and **LR** with Cl⁻, Br⁻, and I⁻ did not affect NDI protons. Only the ¹H NMR signals of amide protons in **SR** and **LR** shifted downfield in the presence of Cl⁻, showing that Cl⁻ preferentially binds inside the cavities of amide linkers via stronger N-H····Cl-H-bonding interaction (SI, Figure S8b-c).

Fluoride ion recognition by NDI receptors was also observed from ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectrum of TBAF•3H₂O in DMSO- d_6 shows (Figure 4c) a strong singlet at -102 ppm corresponding to the F⁻ ion and a weak doublet at -142.5 ppm for HF_2^{-12} Titrations of TBAF with 1 caused an upfield shift of the -102 ppm signal (Figure 4c), which indicates shielding of F⁻ by the NDI receptor. The disappearance of the F⁻ signal at 1:1 TBAF/1 may be attributed to an oxidation of F⁻ to F[•] as a result of the $F^{-} \rightarrow NDI ET$ process that produces the NDI⁻⁻ radical anion. Although we previously considered a possibility of C-F bond formation as one of the modes of NDI/F⁻ interaction, it was not supported by any evidence, including ¹⁹F NMR, as no new signal corresponding to a covalent C-F bond was observed.

The fact that F⁻ induced reductions of NDI to NDI⁻ and NDI²⁻ can be fully reversed by oxidizing them back to neutral NDI with NOBF₄ and that the process can be repeated (SI, Figure S6a) confirm that F⁻ or the resulting F[•] never reacts with any NDI species covalently. Whether the transient F' reacts ultimately with solvent molecules, TBA counterions, homocouples to emanate F₂ gas, or generates HF acid remains unclear after extensive analyses of NDI/ F⁻ mixtures. Nevertheless, F[•] is produced as a result of NDI/F⁻ interaction and ET events. Therefore, the lack of precise information on the fate of F^{*} is inconsequential, as it does not impede the clear understanding of NDI/F⁻ anion- π interaction that leads to an unprecedented $F^{-} \rightarrow NDI ET$ event.

To demonstrate a potential application of NDI/F⁻ interaction, SR was treated individually with aqueous DMSO extracts of an anticavity toothpaste containing 0.24% (w/v) NaF and F--free toothpaste. To our delight, colorless SR turned light orange and displayed the absorption spectrum of the NDI⁻⁻ radical anion with the F⁻ containing toothpaste but did not show any optical changes with the F⁻-free one (SI, Figure S9).

For the first time, a strong NDI/F⁻ interaction was identified and fully characterized by experimental results, as well as validated by computational models (SI, B3LYP/6-31+G**). Supramolecular NDI/F⁻ (anion $-\pi$ and CT) interactions promote an unprecedented electron transfer process from the F⁻ ion to electron deficient NDI receptors. NDI receptors are highly selective toward F⁻ over other anions because of better orbital interactions. They display nM range F⁻ sensitivity in preorganized systems, in which two NDI units perfectly overlap with each other. The reversibility of the colorimetric response and reproducibility of NDI receptors render them excellent reusable F⁻ ion sensors. Therefore, NDI derivatives may be exploited for the detection of various levels of F⁻ ion concentrations in drinking water, consumer products, as well as bone and muscle tissues for the early detection and prevention of F⁻ ion related diseases.

Acknowledgment. S.S. thanks FSU for financial support and Profs. Naresh Dalal and Igor Alabugin for assistance with EPR studies and B3LYP/6-31+G** calculations, respectively.

Supporting Information Available: Energy minimized structures; synthesis and characterizations; additional NMR, EPR, SEC, and ESI-MS data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Quiñonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P. M. Angew. Chem., Int. Ed. 2002, 41, 3389–3392. (b) Alkorta, I.; Rozas, I.; Elguero, J. J. Am. Chem. Soc. **2002**, *124*, 853–8598. (c) Rosokha, Y. S.; Lindeman, S. V.; Rosokha, S. V.; Kochi, J. K. Angew. Chem., Int. Ed. 2004, 43, 4650-4652. (d) Mascal, M. Angew. Chem., Int. Ed. 2006, 45, 2890-2893. (e) Mascal, M.; Yakovlev, I.; Nikitin, E. B.; Fettinger, J. C. Angew. Chem., Int. Ed. 2007, 46, 8782–8784. (f) Hay, B. P.; Bryantsev, V. S. Chem. Commun. 2008, 2417–2428. (g) Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev. 2008, 37, 68–83. (h) Berryman, O. B.; Johnson, D. W. Chem. Commun. 2009, 3143–3153. (i) Arranz, P.; Bianchi, A.; Cuesta, R.; Giorgi, C.; Godino, M. L.; Gutiérrez,
- (2) (a) Yoo, J.; Kim, M.-S.; Hong, S.-J.; Sessler, J. L.; Lee, C.-H. J. Org. Chem. 2009, 74, 1065–1069. (b) Chifotides, H. T.; Schottel, B. L.; Dunbar, K. R. Angew. Chem., Int. Ed. 2010, 49, 7202–7207.
- (3) (a) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. J. Am. Chem. Soc. 2006, 128, 14788–14789. (b) Dawson, R. E.; Henning, A.; Weimann, D. P.; Emery, D.; Ravikumar, V.; Montenegro, J.; Takeuchi, T.; Gabutti, S.; Mayor, M.; Mareda, J.; Schalley, C. A.; Matile, S. *Nat.* Chem. 2010, 2, 533-538.
- (4) (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516. (b)
- Caltagirone, C.; Gale, P. A. *Chem. Soc. Rev.* 2009, *38*, 520–563.
 (5) (a) Lokey, R. S.; Iverson, B. L. *Nature* 1995, *375*, 303–305. (b) Andric, G.; Boas, J. F.; Bond, A. M.; Fallon, G. D.; Ghiggino, K. P.; Hogan, C. F.; G. Joka, S. J., Boha, H. M., Labora, G. J., Shagano, K. L., Hogan, C. L., Hutchison, J. A.; Lee, M. A. -P.; Langford, S. J.; Pilbrow, J. R.; Troup, G. J.; Woodward, C. P. Aust. J. Chem. 2004, 57, 1011–1019.
- (6) Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides; Plenum: New York, 1991; p 58.
- (7) (a) Ayoob, S.; Gupta, A. K. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–487. (b) Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A. *Cancer Causes and Control* **2006**, *17*, 421–428.
- (8) Kauffman, J. M. J. Am. Phys. Surg. 2005, 10, 38–44.
 (9) (a) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P. Chem. Rev. 2010, 110, 3958-3984. (b) Zhao, H.; Gabbaï, F. P. Nat. Chem. 2010, 2, 984-990. (c) Tripier, R.; Platas-Iglesias, C.; Boos, A.; Morfin, J.-F.; Charbonnière, L. Eur. J. Inorg. Chem. 2010, 2735-2745.
- (10) (a) Takeuchi, M.; Shioya, T.; Šwager, T. M. Angew. Chem., Int. Ed. 2001, 40, 3372–3376. (b) Kang, S. O.; Llinares, J. M.; Powell, D.; VanderVelde, D.; Bowman-James, K. J. Am. Chem. Soc. 2003, 125, 10152–10153. (c) Bhosale, S. V.; Bhosale, S. V.; Kalyankar, M. B.; Langford, S. J. Org. Lett. 2009, 11, 5418-5421. (d) Gale, P. A. Chem. Commun. 2008, 4525 4540. (e) Cametti, M.; Rissanen, K. Chem. Commun. 2009, 2809-2829.
- (11) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1997, 119, 10587-10593
- (12) Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005, 127, 2050-2051.

JA107382X