DOI: 10.1002/ejoc.201403424

Metal-Mediated Reformatsky Reaction of Bromodifluoromethyl Ketone and Imine

Chun-Ru Cao,^[a] Min Jiang,^[a] and Jin-Tao Liu*^[a]

Keywords: Synthetic methods / Diastereoselectivity / Chiral auxiliaries / Fluorine / Ketones / Imines

The Reformatsky reaction of bromodifluoromethyl ketones and imines took place readily in the presence of Zn/CuCl at room temperature to afford β -amino α , α -difluoro ketones in good yields. Using (*S*)-*tert*-butanesulfinyl as a chiral auxil-

Introduction

The incorporation of fluorine as a bioisosteric replacement for hydrogen has a profound influence on metabolic degradation, lipophilicity and reactivity of organic compounds, influencing their applications in both pharmaceutical and agrochemical areas.^[1] Therefore, a large number of physiologically active fluorinated compounds are now widely used or under development.^[2] In particular, β-amino α,α -difluoro ketones have received considerable attention due to their unique physical, chemical, and biological properties.^[3] For example, the introduction of the β -amino α, α difluoro ketone unit into a peptide has proven to be successful in the design of enzyme inhibitors such as protease inhibitors.^[4] The β -amino α, α -difluoro ketones are also useful building blocks for the synthesis of more complex fluorinated molecules and biomolecules. Thus far, several methods have been developed for the preparation of Bamino a,a-difluoro ketones, including, but not limited to i) deoxydifluorination of β -keto carbonyl compounds with diethylaminosulfur trifluoride,^[4c,5] ii) the Reformatsky reaction of α -bromo α, α -difluoroacetate with aldimines,^[6] and iii) the Mannich-type reaction of difluorinated silvl enol ether with aldimines.[7]

The Reformatsky reaction is an efficient approach to C– C bond formation and has been used extensively for the synthesis of a wide range of different compounds.^[8] Recently, our group reported the synthesis of α,α -difluorinated β -hydroxy carbonyl compounds using the Reformatsky reaction of bromodifluoromethyl ketones with aldehydes using water as an efficient and environmentally friendly solvent [Scheme 1, Equation (1)].^[9] As an extension of our iary, the asymmetric Reformatsky reaction was also achieved and found to proceed with excellent diastereoselectivities. A plausible model is proposed to account for the high stereoselectivity of the reaction.

studies focused on Reformatsky reaction applications with bromodifluoromethyl ketones, we further investigated the reaction of bromodifluoromethyl ketones with imines as a means of constructing corresponding β -amino α , α -difluoro ketones [Scheme 1, Equation (2)]. The results are reported in this paper.

Scheme 1. Previous and current Reformatsky chemistries of interest.

Results and Discussion

Initially, *N*-benzylideneaniline $(2a)^{[10]}$ was used as the substrate to investigate the Reformatsky reaction of bromodifluoromethyl phenyl ketone (1a). When the reaction was carried out with 4.0 equiv. of imine 2a and 4.0 equiv. of zinc powder in water at room temp., desired product 3a was obtained in only 24% yield (Scheme 2). ¹⁹F NMR monitoring revealed that α,α -difluorinated β -hydroxy carbonyl compound 4a was formed as the major byproduct, indicating that the imine may decompose to its corresponding aldehyde in water.

Next, we used organic solvent to study the Reformatsky reaction of imine **2a**. Compound **3a** was still obtained in low yield (38%) when the reaction was carried out in acetonitrile (Table 1, Entry 1). The impact of various copper (I) species on reaction efficiency was tested; CuBr and CuI

[[]a] Key Laboratory of Organofluorine Chemistry, Shanghai

Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China E-mail: jtliu@sioc.ac.cn http://liujintao.sioc.ac.cn/

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201403424.

Scheme 2. Reformatsky reaction of bromodifluoromethyl phenyl ketone and N-benzylideneaniline in water.

were found to improve the yields of 3a to 57% and 49%, respectively (Table 1, Entries 2, 3). The reaction did not occur in the absence of copper salt (Table 1, Entry 4). The use of Ti(OEt)₄ as an additive did not improve the yield of 3a either (Table 1, Entry 5). However, when molecular sieves were added to the reaction mixture, 3a was obtained in 82%yield (Table 1, Entry 6). Further examination of solvent effects revealed that tetrahydrofuran (THF), in the presence of molecular sieves, afforded a result similar to that noted when using acetonitrile as solvent (Table 1, Entries 6, 7). Despite inclusion of molecular sieves, no reaction was observed when using dichloroethane (DCE) or toluene as solvents (Table 1, Entries 8, 9). Consequently, the optimal reaction conditions were assigned to include 4.0 equiv. of imine, 4.0 equiv. of zinc and 1.5 equiv. of CuBr in the presence of molecule sieves in acetonitrile at room temp. It is worth noting that self-condensation and hydrogenation of 1a were observed as competitive reactions along with the desired Reformatsky reaction (see Supporting Information).

Table 1. Screening of reaction conditions.

C Ph	CF ₂ Br	Zn ([Cu] + H	4.0 equiv.) (1.5 equiv.) additive	Ph	HN ^{/Ph} /Ph F 3a
Entry ^[a]	[Cu]	Additive	Solvent	Time [h]	Yield [%] ^[b]
1	CuCl	_	CH ₃ CN	4	38
2	CuBr	_	CH ₃ CN	4	57
3	CuI	_	CH ₃ CN	4	49
4	_	_	CH ₃ CN	9	trace
5	CuBr	Ti(OEt) ₄ (0.4 equiv.)	CH ₃ CN	4	48
6	CuBr	4 Å MS (50 mg)	CH ₃ CN	4	82
7	CuBr	4 Å MS (50 mg)	THF	4	81
8	CuBr	4 Å MS (50 mg)	DCE	4	0
9	CuBr	4 Å MS (50 mg)	toluene	4	0

[a] Conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), Zn (0.8 mmol), [Cu] (0.3 mmol), additive (0.08 mmol or 50 mg) and 3 mL solvent at room temp. [b] Determined by ¹⁹F NMR using PhCF₃ as internal standard.

Using the optimized conditions, a variety of imines were investigated to evaluate the scope of this reaction. The results are summarized in Table 2. It was found that the electronic effect of substituents influenced the reaction. Electron-rich imines bearing methyl or methoxy-substitution afforded the corresponding products in moderate yields (55–78%, Table 2, Entries 2, 5). Halogen-substituted imines re-

acted well with **1a** to give desired products **3c**, **3d** and **3f** in high yields (87–91%, Table 2, Entries 3, 4, 6); the use of bromo substitution is envisioned to enable further modification of the product (Table 2, Entry 4). The generality of the reaction was also surveyed with various bromodifluoro ketones **1** under the standard conditions. Unfortunately, both *p*-methoxy and *p*-chloro-substituted phenyl ketones (**1b** and **1c**) gave desired products **3g** and **3h** in low yields (Table 2, Entries 7, 8). The reaction of aliphatic ketone **1d** with imine **2a** took place readily to afford corresponding product **3i** in 81% yield (Table 2, Entry 9).

Table 2. Reformatsky reactions of bromodifluoromethyl ketones 1 and imines 2.

R ¹	$ \begin{array}{c} 0 \\ $	$ \begin{array}{c} 4 \text{ Å MS} \\ \text{Zn (4.0 equiv.)} \\ \text{CuBr (1.5 equiv.)} \\ \hline \text{CH}_3\text{CN, r.t., 4 h} \\ \end{array} $	HN^{R^3} R^2 3
Entry ^[a]	1, R ¹	2 , R^2/R^3	Yield (3,%)[b]
	1a , C ₆ H ₅	$2a, C_6H_5/C_6H_5$	3a , 70
2	1a, C ₆ H ₅	2b , $C_6H_5/4$ -MeOC ₆ H ₄	3b , 55
3	1a, C ₆ H ₅	2c , $C_6H_5/4$ - ClC_6H_4	3c , 87
ł	1a , C_6H_5	2d , $C_6H_5/4$ -Br C_6H_4	3d , 91
5	1a , C_6H_5	2e , $4 - MeC_6H_4/C_6H_5$	3e , 78
5	1a, C ₆ H ₅	2f , $4\text{-ClC}_{6}H_{4}/C_{6}H_{5}$	3f , 90
7	1b , 4 -MeOC ₆ H ₄	2a , C_6H_5/C_6H_5	3g , 57
3	1c, 4 -ClC ₆ H ₄	2a , C ₆ H ₅ /C ₆ H ₅	3h , 28
)	1d, C ₆ H ₅ (CH ₂) ₃	2a , C ₆ H ₅ /C ₆ H ₅	3i , 81

[a] Conditions: 1 (0.2 mmol), 2 (0.8 mmol), Zn (0.8 mmol), CuBr (0.3 mmol), 4 Å MS (50 mg) and 3 mL CH₃CN at room temp. for 4 h. [b] Isolated yield.

The diastereoselective addition of nucleophiles to chiral imines is a useful method for the preparation of optically active secondary amines.^[11] Staas and Sorochinsky have independently reported the diastereoselective synthesis of α, α -difluoro β -amino acids via the Reformatsky reaction of ethyl bromodifluoroacetate and chiral sulfinylimines derived from optically pure *N*-tert-butanesulfinamide and *N*-*p*-toluenesulfinamide, respectively.^[12] A group of α -fluoro β -amino acid derivatives have also been obtained with moderate diastereoselectivities from the reaction of chiral *N*-tert-butanesulfinylimines with ethyl bromofluoroacetate in the presence of activated Zn dust.^[13] Motivated by the above results, we prepared a series of chiral ketimines **5** from (*R*)-tert-butanesulfinamide,^[14] and studied their reactions with **1** under the optimized conditions.

FULL PAPER

The data in Table 3 indicates that the asymmetric reaction can tolerate a broad range of functional groups. The reactions of chiral ketimines 5 bearing methyl, methoxy, halide, and cyano substitution proceeded well to afford the corresponding products in moderate to good yields and with high diastereoselectivities (68–85%, 91:9–95:5 dr, Table 3, Entries 2-8). Imines derived from 4-biphenylcarbaldehyde or furfural also afforded the desired products with excellent diastereoselectivities (Table 3, Entries 9, 10). Slightly lower diastereoselectivities were obtained with naphthyl, alkyl or vinyl-substituted imines (86:14–89:11 dr, Table 3, Entries 11–13). The scope of these asymmetric reactions was also investigated using p-methoxy- and pchloro-substituted phenyl ketones; moderate yields and excellent stereoselectivities were obtained (>95:5 dr, Table 3, Entries 14, 15). In the case of aliphatic ketone 1d, desired product **6p** was obtained in 72% yield with 91:9 dr (Table 3, Entry 16).

Table 3. Asymmetric Reformatsky reaction of bromodifluoromethyl ketones 1 and chiral ketimines 5.

tBu

CF ₂ Br -4	Bu 4 Å MS Zn (4.0 equiv.) CuBr (1.5 equiv.) CH-CN rt 4 b		S O R ⁴
- K' П	01130N, 1.1., 4 11	F F	
1, R ¹	5 , R ⁴	Yield (6,%) ^[b]	dr ^[c]
1a , C ₆ H ₅	5a, C ₆ H ₅	6a , 60	>95:5
$1a, C_6H_5$	5b , 4-MeC ₆ H ₄	6b , 72	>95:5
1a, C ₆ H ₅	5c, 4-MeOC ₆ H ₄	6c , 76	>95:5
1a, C ₆ H ₅	5d, 4-ClC ₆ H ₄	6d , 76	>95:5
1a, C ₆ H ₅	5e, 4-BrC ₆ H ₄	6e , 85	>95:5
1a , C ₆ H ₅	5f, 4-CNC ₆ H ₄	6f , 77	95:5
1a , C ₆ H ₅	5g, 2-ClC ₆ H ₄	6 g, 73	>95:5
1a , C ₆ H ₅	5h , 2-BrC ₆ H ₄	6h , 68	91:9
1a , C ₆ H ₅	5i, 4-PhC ₆ H ₄	6i , 81	>95:5
1a , C ₆ H ₅	5j , 2-furyl	6j , 68	95:5
1a , C ₆ H ₅	5k, 2-naphthyl	6k , 56	89:11
1a , C ₆ H ₅	51, C ₆ H ₅ (CH ₂) ₂	61 , 63	86:14
1a , C ₆ H ₅	5m, 4-ClC ₆ H ₄ CH=CH	6m , 64	88:12
1b , 4 -MeOC ₆ H ₄	5d, 4-ClC ₆ H ₄	6n , 67	>95:5
1c, 4-ClC ₆ H ₄	5d, 4-ClC ₆ H ₄	60 , 60	>95:5
1d, C ₆ H ₅ (CH ₂) ₃	5d , 4-ClC ₆ H ₄	6p , 72	91:9
	$CF_{2}Br + R^{4} + H$ 5 1, R ¹ 1a, C ₆ H ₅ 1a, C ₆ H ₅ 1b, 4-MeOC ₆ H ₄ 1c, 4-ClC ₆ H ₄ 1d, C ₆ H ₅ (CH ₂) ₃ (b) (CH ₂)	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \hline \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \hline \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \hline \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \hline \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$	$ \begin{array}{c} & \underset{R^4}{\overset{P}{\overset{W}}} & \underset{R^4}{\overset{P}{\overset{W}}} & \underset{H}{\overset{H}} & \underset{R^4}{\overset{D}{\overset{CuBr}}} & \underset{CH_3CN, r.t., 4 \ h}{\overset{CuBr}} & \underset{R^4}{\overset{CuBr}{\overset{CuBr}} (1.5 \ \text{equiv.})} \\ & \underset{R^4}{\overset{CuBr}{\overset{CuBr}} (1.5 \ \text{equiv.})} & \underset{F}{\overset{P}{\overset{F}}} & \underset{F}{\overset{F}} & \underset{F}} & \underset{F}{\overset{F}} & \underset{F}} & \underset{F}{\overset{F}} & \underset{F}{\overset{F}} & $

[a] Conditions: 1 (0.2 mmol), 5 (0.8 mmol), Zn (0.8 mmol), CuBr (0.3 mmol), 4 Å MS (50 mg) and 3 mL CH₃CN at room temp. for 4 h. [b] Isolated yield. [c] Determined by ¹⁹F NMR spectra of the crude reaction mixture.

As a comparison, we further investigated the reactivity of bromomethyl phenyl ketone **1e**. Reformatsky chemistry with **1e** failed to proceed under our generally applied optimized reaction conditions and all starting materials were recovered (Scheme 3). Efforts to extend reaction time, increase reaction temperature, or to use additives failed to promote this reaction.

To determine the configuration of the products and to illustrate the synthetic utility of this reaction, we attempted the conversion of compound **6e** into optically pure amine (*R*)-7. Removal of the sulfinyl group with HCl in $Et_2O/$

Scheme 3. Attempted Reformatsky reaction of bromomethyl phenyl ketone 1e.

MeOH under mild conditions afforded amine 7 in 76% yield. Comparisons to optical data for previously reported (R)-7^[15] revealed 7 generated herein to bear the *R*-configuration (Scheme 4). Consequently, the stereochemistry of products **6** (Table 3) is putatively assigned to be (Rc,Rs).

Scheme 4. Preparation of 7 by deprotection of 6e.

These β -amino α, α -difluoro ketone derivatives could be used as potential synthons in organic synthesis. For example, enantiopure 3,3-difluoroazetidin-2-one, a pharmaceutically important target as well as a useful synthetic building block, was successfully synthesized from the corresponding β -amino α, α -difluoro ketone via a two-step route.^[15]

Based on the above results and related literature,^[12] the six-membered models **A** and **B** can be used to account for the high stereoselectivity of this reaction. As shown in Figure 1, transition state **B** is unfavored due to repulsive steric interactions between the chiral auxiliary and ketamine-born **R'** group. Therefore, transition state **A** is believed to predominate during the course of reaction ultimately affording the *cis* adduct as the major Reformatsky product.

Figure 1. Proposed transition states for the Reformatsky reaction.

Conclusions

In summary, we have developed an efficient method for the synthesis of β -amino- α , α -difluoro ketones. In the presence of Zn/CuBr, the Reformatsky reaction of various imines and bromodifluoromethyl ketones took place readily under mild conditions to give the corresponding difluorinated products in good yields. Excellent diastereoselectivities were obtained in the asymmetric reaction of imines derived from (*R*)-*tert*-butanesulfinamide.

Experimental Section

General Experimental Details: Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. CH₃CN was freshly distilled by standard procedure prior to use. Melting points were measured with a Melt-Temp apparatus and uncorrected. IR spectra were recorded with an infrared spectrometer. ¹H NMR spectra were recorded with Bruker AM 300 (300 MHz) or Agilent 400 (400 MHz) spectrometers with TMS as the internal standard. ¹⁹F NMR spectra were recorded using Bruker AM-300 (282 MHz) or Agilent 400 (376 MHz) spectrometers with CFCl₃ as the external standard. ¹³C NMR spectra were recorded with DPX 400 (100 MHz) or Agilent 400 (100 MHz) spectrometers. HRMS spectra were obtained using a Waters Micromass GCT (EI) or Bruker APEXIII 7.0 TESLA FTMS (ESI) spectrometer.

Typical Procedure for the Reformatsky Reaction: To a flask containing imine 2 or 5 (0.8 mmol), bromodifluoromethyl ketone 1 (0.2 mmol), molecular sieves (4 Å, 50 mg) and acetonitrile (3 mL) were added zinc powder (0.8 mmol) and CuBr (0.3 mmol) with stirring. The mixture was stirred at room temp. for 4 h, and then quenched with saturated aqueous NH₄Cl solution. The resulting mixture was stirred for an additional 10 min, and then extracted with EtOAc (15 mL × 3). The combined organic layer was dried with sodium sulfate. After the removal of solvent under reduced pressure, the residue was subjected to column chromatography on silica gel using EtOAc and petroleum ether as eluent to afford corresponding product **3** or **6**.

Procedure for the Preparation of (*R*)-7: A suspension of (Rc,Rs)-6a (0.11 mmol) in MeOH (1 mL) was added the mixture of HCl/Et₂O (4 M, 0.5 mL) at room temp. After stirring for 30 min, the reaction was quenched with saturated aqueous NaHCO₃ solution. The resulting mixture was stirred for an additional 10 min, and extracted with EtOAc (15 mL \times 3). The combined organic layer was dried with sodium sulfate. After the removal of solvent under reduced pressure, the residue was purified by flash column chromatography on silica gel (AcOEt/hexane, 1:5) to give (*R*)-7.

Compound 3a: 47 mg, yield 70%; yellow solid, m.p. 85–87 °C. IR (KBr): $\tilde{v} = 3382$, 3057, 3026, 1685, 1606, 1510, 1498, 1303, 1288, 1214, 1123, 1075, 750, 700, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99$ (d, J = 8.0 Hz, 2 H), 7.61 (t, J = 7.1 Hz, 1 H), 7.46 (t, J = 7.9 Hz, 4 H), 7.40–7.28 (m, 3 H), 7.12 (t, J = 7.6 Hz, 2 H), 6.73 (t, J = 7.3 Hz, 1 H), 6.62 (d, J = 8.3 Hz, 2 H), 5.34 (dt, J = 17.7, 7.5 Hz, 1 H), 4.56 (d, J = 7.5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.9$ (dd, J = 29.6, 27.9 Hz), 145.5, 134.4, 134.3, 132.8, 129.8 (t, J = 3.4 Hz), 129.2, 128.9, 128.8, 128.7, 128.6, 119.3 (dd, J = 259.6, 257.8 Hz), 118.9, 114.2, 60.4 (dd, J = 25.9, 22.5 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -102.9$ (dd, J =272.9, 8.4 Hz, 1 F), -112.3 (dd, J = 272.9, 17.7 Hz, 1 F) ppm. MS (EI): m/z (%) = 337 (4.14), 183 (13.68), 182 (100.00), 180 (5.26),

140 (3.62), 105 (13.34), 104 (8.74), 77 (21.76). HRMS (EI): Calcd. for $C_{21}H_{17}F_2NO [M]^+$: 337.1278, found 337.1277.

Compound 3b: 44 mg, yield 55%; yellow solid, m.p. 95–97 °C. IR (KBr): $\tilde{v} = 3363$, 2930, 1696, 1677, 1516, 1451, 1287, 1234, 1121, 1075, 1034, 824, 708, 698, 611 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.97$ (d, J = 7.8 Hz, 2 H), 7.60 (t, J = 7.4 Hz, 1 H), 7.52–7.39 (m, 4 H), 7.39–7.27 (m, 3 H), 6.65 (d, J = 8.9 Hz, 2 H), 6.54 (d, J = 8.9 Hz, 2 H), 5.21 (dd, J = 18.7, 7.1 Hz, 1 H), 4.24 (br., s, 1 H), 3.66 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.2$ (dd, J = 34.0, 28.0 Hz), 153.2, 139.5, 134.7, 134.1, 133.8 133.2, 129.8 (t, J = 3.3 Hz), 128.7, 128.6, 128.4, 117.5 (dd, J = 259.8, 256.8 Hz), 116.0, 114.8, 61.5 (dd, J = 23.0, 28.0 Hz), 55.7 ppm. ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -102.0$ (dd, J = 272.4, 7.8 Hz, 1 F), -113.1 (dd, J = 272.4, 18.7 Hz, 1 F) ppm. MS (EI): m/z (%) = 367 (6.91) [M]⁺, 213 (17.39), 212 (100.00), 168 (8.25), 134 (6.16), 107 (4.74), 105 (16.00), 77 (21.69). HRMS (EI): Calcd. for C₂₂H₁₉F₂NO₂ [M]⁺: 367.1384, found 367.1387.

Compound 3c: 64.5, yield 87%; pale yellow solid, m.p. 92–94 °C. IR (KBr): $\tilde{v} = 3379$, 2916, 1679, 1598, 1506, 1403, 1287, 1122, 1074, 831, 712 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (d, J = 7.9 Hz, 2 H), 7.65–7.57 (m, 1 H), 7.44 (dd, J = 15.3, 7.5 Hz, 4 H), 7.38–7.28 (m, 3 H), 7.04 (d, J = 8.7 Hz, 2 H), 6.52 (d, J = 8.7 Hz, 2 H), 5.25 (dt, J = 17.3, 8.7 Hz, 1 H), 4.56 (d, J = 8.7 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.8$ (dd, J = 29.6, 28.1 Hz), 144.1, 134.3, 133.9, 132.7, 129.7 (t, J = 3.4 Hz), 129.1, 128.9, 128.7, 128.6, 128.5, 123.9, 117.1 (dd, J = 260.0, 259.0 Hz), 115.3, 60.5 (dd, J = 25.9, 22.7 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -103.0$ (dd, J = 275.1, 8.3 Hz, 1 F), -111.9 (dd, J = 275.1, 17.3 Hz, 1 F) ppm. MS (EI): m/z (%) = 371 (6.10) [M]⁺, 216 (100.00), 218 (34.42), 217 (16.28), 138 (7.57), 77 (6.15), 140 (5.24), 111 (5.13). HRMS (EI): Calcd. for C₂₁H₁₆ClF₂NO [M]⁺: 371.0888, found 371.0887.

Compound 3d: 75 mg, yield 91%; white solid, m.p. 104–106 °C. FT-IR (KBr): $\tilde{v} = 3378$, 2923, 1696, 1676, 1596, 1286, 1135, 1071, 829, 710 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (d, J = 7.7 Hz, 2 H), 7.61 (t, J = 7.4 Hz, 1 H), 7.47–7.42 (m, 4 H), 7.38–7.32 (m, 3 H), 7.18 (d, J = 8.8 Hz, 2 H), 6.48 (d, J = 8.8 Hz, 2 H), 5.26 (dt, J = 17.0, 8.4 Hz, 1 H), 4.59 (d, J = 29.7, 28.2 Hz), 144.5, 134.4, 133.9, 132.7, 132.0, 129.8 (t, J = 3.3 Hz), 128.9, 128.8, 128.7, 128.5, 117.1 (dd, J = 259.6, 258.5 Hz), 115.8, 110.8, 60.3 (dd, J = 25.9, 22.7 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -103.0$ (dd, J = 275.2, 8.4 Hz, 1 F), -111.8 (dd, J = 275.2, 17.2 Hz, 1 F) ppm. MS (EI): m/z (%) = 415 (2.68) [M]⁺, 171 (100.00), 173 (94.57), 260 (52.44), 262 (42.57), 180 (37.57), 105 (25.03), 65 (23.62), 92 (21.83). HRMS (EI): Calcd. for C₂₁H₁₆BrF₂NO [M]⁺: 415.0383, found 415.0384.

Compound 3e: 55 mg, yield 78%; yellow solid; m.p. 108–110 °C. IR (KBr): $\tilde{v} = 3367$, 1684, 1607, 1514, 1500, 1448, 1300, 1290, 1217, 1128, 1077, 840, 790, 751, 689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 7.8 Hz, 2 H), 7.61 (t, J = 7.4 Hz, 1 H), 7.46 (t, J = 7.7 Hz, 2 H), 7.36 (d, J = 7.8 Hz, 2 H), 7.17 (d, J = 7.8 Hz, 2 H), 7.11 (t, J = 7.8 Hz, 2 H), 6.72 (t, J = 7.3 Hz, 1 H), 6.62 (d, J = 7.9 Hz, 2 H), 5.32 (d, J = 14.5 Hz, 1 H), 4.54 (br., s, 1 H), 2.33 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.0$ (dd, J = 29.8, 28.0 Hz), 145.6, 138.6, 134.2, 132.9, 131.3, 129.8 (t, J = 3.4 Hz), 129.4, 129.2, 128.7, 128.4, 118.9, 117.4 (dd, J = 260.8, 258.7 Hz), 114.2, 60.2 (dd, J = 26.0, 22.5 Hz), 21.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -103.0$ (dd, J = 272.1, 8.4 Hz, 1 F), -112.5 (dd, J = 272.1, 17.8 Hz, 1 F) ppm. MS (EI): m/z (%) = 351 (2.32) [M]⁺, 197 (15.56), 196 (100.00), 194 (3.25), 105 (8.57), 104 (12.49),

FULL PAPER

91 (3.02), 77 (21.62), 51 (2.59). HRMS (EI): Calcd. for $C_{22}H_{19}F_2NO$ [M]⁺: 351.1435, found 351.1433.

Compound 3f: 67 mg, yield 90%; pale yellow solid, m.p. 124-125 °C. IR (KBr): v = 3353, 3053, 2919, 1698, 1604, 1498, 1180, 1070, 927, 756, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, J = 7.7 Hz, 2 H), 7.63 (dd, J = 10.6, 4.2 Hz, 1 H), 7.47 (t, J =7.6 Hz, 2 H), 7.40 (d, J = 7.9 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 7.11 (t, J = 7.5 Hz, 2 H), 6.73 (t, J = 7.3 Hz, 1 H), 6.57 (d, J =7.7 Hz, 2 H), 5.30 (dt, J = 17.6, 8.9 Hz, 1 H), 4.51 (d, J = 8.9 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 189.5 (dd, J = 29.6, 27.9 Hz), 145.2, 134.7, 134.4, 133.0, 132.6, 129.9, 129.8 (t, J =3.4 Hz), 129.3, 128.9, 128.7, 119.2, 117.0 (dd, *J* = 260.0, 257.9 Hz), 114.2, 59.8 (dd, J = 26.0, 22.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -102.5$ (dd, J = 275.9, 8.0 Hz, 1 F), -112.3 (dd, J =275.9, 17.6 Hz, 1 F) ppm. MS (EI): m/z (%) = 371 (3.57) [M]⁺, 218 (31.64), 217 (43.25), 216 (100.00), 174 (5.06), 105 (15.21), 104 (14.06), 77 (43.25). HRMS (EI): Calcd. for C₂₁H₁₆ClF₂NO [M]⁺: 371.0888, found 371.0892.

Compound 3g: 42 mg, yield 57%; yellow solid; m.p. 127–129 °C. IR (KBr): $\tilde{v} = 3375$, 1665, 1602, 1511, 1498, 1296, 1268, 1183, 1122, 1076, 749, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (d, J = 8.7 Hz, 2 H), 7.48 (d, J = 7.2 Hz, 2 H), 7.38–7.28 (m, 3 H), 7.11 (t, J = 7.9 Hz, 2 H), 6.92 (d, J = 9.0 Hz, 2 H), 6.71 (t, J = 7.3 Hz, 1 H), 6.62 (d, J = 7.9 Hz, 2 H), 5.34–5.30 (m, 1 H), 4.65 (br., s, 1 H), 3.85 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 187.9$ (dd, J = 29.1, 28.0 Hz), 164.6, 145.7, 134.7, 132.5 (t, J = 3.7 Hz), 129.2, 128.7, 128.6, 128.1, 125.6 (t, J = 1.8 Hz), 118.8, 117.5 (dd, J = 260.6, 259.0 Hz), 114.1, 114.0, 60.6 (dd, J = 25.8, 22.8 Hz), 55.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -102.7$ (dd, J = 271.8, 8.7 Hz, 1 F), -111.0 (dd, J = 271.8, 17.1 Hz, 1 F) ppm. MS (EI): m/z (%) = 367 (1.70) [M]⁺, 183 (14.33), 182 (100.00), 180 (7.85), 139 (4.20), 135 (13.51), 104 (9.34), 92 (4.39), 77 (22.51). HRMS (EI): Calcd. for C₂₂H₁₉F₂NO₂ [M]⁺: 367.1384, found 367.1382.

Compound 3h: 21 mg, yield 28%; yellow solid; m.p. 100–102 °C. IR (KBr): $\tilde{v} = 3383$, 1676, 1604, 1586, 1403, 1287, 1120, 1094, 1077, 1014, 933, 851, 808, 784, 717, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.87$ (d, J = 8.5 Hz, 2 H), 7.45–7.36 (m, 4 H), 7.38–7.27 (m, 3 H), 7.10 (t, J = 7.9 Hz, 2 H), 6.71 (t, J = 7.3 Hz, 1 H), 6.60 (d, J = 7.9 Hz, 2 H), 5.27 (dd, J = 17.0, 8.2 Hz, 1 H), 4.49 (br., s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.9$ (dd, J = 30.2, 28.3 Hz), 145.4, 140.9, 134.2, 133.2, 131.2 (t, J = 3.6 Hz), 129.3, 129.0, 128.8, 128.7, 128.5, 119.1, 117.3 (dd, J = 260.9, 259.2 Hz), 114.2, 60.4 (dd, J = 25.8, 22.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -103.0$ (dd, J = 273.5, 8.2 Hz, 1 F), -112.1 (dd, J = 273.5, 17.6 Hz, 1 F) ppm. MS (EI): m/z (%) = 371 (1.66) [M]⁺, 183 (14.82), 182 (100.00), 180 (4.11), 140 (3.43), 139 (5.66), 111 (5.85), 104 (9.28), 77 (13.65). HRMS (EI): Calcd. for C₂₁H₁₆ClF₂NO [M]⁺: 371.0888, found 371.0885.

Compound 3i: 60 mg, yield 81 %; white solid; m.p. 100–102 °C. IR (KBr): $\tilde{v} = 3367$, 1600, 1500, 1482, 1453, 1423, 1316, 1268, 1248, 1069, 752, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ –7.28 (m, 5 H), 7.25 (dd, J = 8.5, 6.0 Hz, 2 H), 7.18 (t, J = 7.3 Hz, 1 H), 7.12 (dd, J = 8.4, 7.5 Hz, 2 H), 7.08 (d, J = 6.9 Hz, 2 H), 6.74 (t, J = 7.3 Hz, 1 H), 6.61 (d, J = 7.8 Hz, 2 H), 5.06 (dd, J = 17.7, 8.5 Hz, 1 H), 4.40 (s, 1 H), 2.59–2.45 (m, 4 H), 1.89–1.82 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.5$ (dd, J = 30.8, 27.2 Hz), 145.4, 141.1, 134.2, 129.3, 128.7, 128.6, 128.4 (d, J = 1.0 Hz), 128.3, 126.0, 119.2, 118.5, 115.9 (dd, J = 260.6, 258.9 Hz), 114.3, 59.5 (dd, J = 26.1, 22.6 Hz), 37.2, 34.5, 23.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -109.9$ (dd, J = 260.7, 8.5 Hz, 1 F), -119.8 (dd, J = 260.7, 17.7 Hz, 1 F) ppm. MS (EI): *mlz* (%) = 379 (0.24) [M]⁺, 183 (14.92), 182 (100.00), 180 (5.44), 104 (9.72), 91 (1.58), 78 (1.66), 77 (13.21), 51 (1.44). HRMS (EI): Calcd. for $C_{24}H_{23}F_2NO$ [M]⁺: 371.1748, found 371.1745.

Compound (*Rc*,*Rs*)-6a: 44 mg, yield 60%; colorless oil. $[a]_{26}^{26} = -76.1$ (*c* = 1.01, CHCl₃). IR (film): $\tilde{v} = 3206$, 3066, 2960, 2926, 1701, 1597, 1474, 1449, 1183, 1060, 913, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, *J* = 7.5 Hz, 2 H), 7.58 (t, *J* = 7.4 Hz, 1 H), 7.43–7.37 (m, 4 H), 7.33–7.31 (m, 3 H), 5.18 (td, *J* = 12.5, 4.3 Hz, 1 H), 4.36 (d, *J* = 4.3 Hz, 1 H), 1.20 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.3$ (t, *J* = 29.6 Hz), 134.5, 132.8, 132.4, 130.1 (t, *J* = 3.3 Hz), 129.9, 129.2, 128.7, 128.6, 116.6 (t, *J* = 261.5 Hz), 61.1 (t, *J* = 23.5 Hz), 56.3, 22.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -106.5$ (dd, *J* = 12.2, 7.1 Hz, 2 F) ppm. MS (MALDI): *m/z* (%) = 366 [M + H]⁺, 388 [M + Na]⁺. HRMS (MALDI): Calcd. for C₁₉H₂₂F₂NO₂S [M + H]⁺: 366.1339, found 366.1334.

Compound (*Rc*,*Rs*)-6b: 55 mg, yield 72%; colorless oil. $[a]_{27}^{27} = -49.7$ (*c* = 0.93, CHCl₃). IR (film): $\tilde{v} = 3205$, 2975, 2959, 2924, 1701, 1597, 1449, 1183, 1087, 918, 715 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, *J* = 7.6 Hz, 2 H), 7.57 (t, *J* = 7.4 Hz, 1 H), 7.41 (t, *J* = 7.8 Hz, 2 H), 7.25 (d, *J* = 7.7 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 5.14 (td, *J* = 12.5, 4.2 Hz, 1 H), 4.33 (d, *J* = 4.2 Hz, 1 H), 2.30 (s, 3 H), 1.19 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.2$ (t, *J* = 29.6 Hz), 139.1, 134.5, 132.3, 130.0 (t, *J* = 3.2 Hz), 129.7, 129.5, 129.3, 128.6, 116.5 (t, *J* = 261.2 Hz), 60.7 (t, *J* = 23.3 Hz), 56.1, 22.5, 21.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -106.2$ (dd, *J* = 280.9, 12.5 Hz, 1 F), -107.2 (dd, *J* = 280.9, 12.5 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 380 [M + H]⁺. HRMS (ESI): Calcd. for C₂₀H₂₄F₂NO₂S [M + H]⁺: 380.1496, found 380.1490.

Compound (*Rc*,*Rs*)-6c: 63 mg, yield 76%; colorless oil. $[a]_{D}^{27} = -34.0$ (*c* = 1.01, CH₃OH). IR (film): $\tilde{v} = 3073$, 2961, 1701, 1612, 1598, 1515, 1449, 1252, 1028, 913, 838, 794, 714 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, *J* = 7.8 Hz, 2 H), 7.58 (t, *J* = 7.4 Hz, 1 H), 7.41 (t, *J* = 7.8 Hz, 2 H), 7.28 (d, *J* = 8.5 Hz, 2 H), 6.83 (d, *J* = 8.6 Hz, 2 H), 5.12 (td, *J* = 12.6, 3.8 Hz, 1 H), 4.31 (d, *J* = 3.8 Hz, 1 H), 3.76 (s, 3 H), 1.20 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.3$ (t, *J* = 29.5 Hz), 160.2, 134.5, 132.3, 131.1, 129.9 (t, *J* = 3.3 Hz), 128.6, 124.2, 116.6 (t, *J* = 259.9 Hz), 113.9, 60.3 (t, *J* = 23.3 Hz), 56.1, 55.2, 22.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -106.2$ (dd, *J* = 279.9, 12.2 Hz, 1 F), -107.8 (dd, *J* = 279.9, 12.8 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 396 [M + H]⁺, 418 [M + Na]⁺. HRMS (ESI): Calcd. for C₂₀H₂₃F₂NNaO₃S [M + Na]⁺: 418.1264, found 418.1269.

Compound (*Rc*,*Rs*)-6d: 64 mg, yield 76%; colorless oil. $[a]_{27}^{27} = -41.9$ (*c* = 1.05, CH₃OH). IR (film): $\hat{v} = 3192$, 2977, 2927, 2869, 1701, 1597, 1492, 1449, 1365, 1056, 1015, 904, 730 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.94$ (d, J = 7.6 Hz, 2 H), 7.60 (t, J = 7.4 Hz, 1 H), 7.43 (t, J = 7.9 Hz, 2 H), 7.33 (m, 4 H), 5.16 (td, J = 12.4, 4.1 Hz, 1 H), 4.39 (d, J = 4.1 Hz, 1 H), 1.20 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.8$ (t, J = 29.9 Hz), 135.2, 134.8, 131.9, 131.2, 130.1, 130.0, 128.7, 116.2 (t, J = 260.6 Hz), 60.2 (t, J = 23.5 Hz), 56.3, 22.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -105.9$ (dd, J = 286.2, 12.2 Hz, 1 F), -106.8 (dd, J = 286.2, 12.5 Hz, 1 F) ppm. MS (ESI): m/z (%) = 400 [M + H]⁺, 422 [M + Na]⁺. HRMS (MALDI): Calcd. for C₁₉H₂₀ClF₂NNaO₂S [M + Na]⁺: 422.0769, found 422.0764.

Compound (*Rc*,*Rs*)-6e: 75 mg, yield 85%; colorless oil. $[a]_D^{27} = -63.7$ (*c* = 1.11, CHCl₃). IR (film): $\tilde{v} = 3232$, 2960, 2927, 2868, 1731, 1698, 1597, 1489, 1450, 1362, 1183, 1072, 1012, 773, 715 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, *J* = 7.5 Hz, 2 H), 7.59 (t, *J* = 7.5 Hz, 1 H), 7.48–7.39 (m, 4 H), 7.26 (d, *J* = 8.4 Hz, 2 H), 5.14 (td, *J* = 12.4, 4.2 Hz, 1 H), 4.39 (d, *J* = 4.2 Hz, 1 H), 1.19 (s, 9)

H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 188.8 (t, *J* = 29.9 Hz), 134.7, 131.9 (t, *J* = 2.4 Hz), 131.8, 131.7, 131.5, 130.1 (t, *J* = 3.3 Hz), 128.7, 123.5, 116.2 (t, *J* = 261.9 Hz), 60.3 (t, *J* = 23.4 Hz), 56.3, 22.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -105.8 (dd, *J* = 286.4, 12.2 Hz, 1 F), -106.8 (dd, *J* = 286.4, 12.6 Hz, 1 F) ppm. MS (MALDI): *m*/*z* (%) = 444 [M + H]⁺, 467 [M + Na]⁺. HRMS (MALDI): Calcd. for C₁₉H₂₁BrF₂NO₂S [M + H]⁺: 444.0444, found 444.0439.

Compound (*Rc,Rs*)-6f: 64 mg, yield 77%; white solid; m.p. 50– 52 °C. [*a*]₂²⁸ = -70.3 (*c* = 1.03, CHCl₃). IR (KBr): \tilde{v} = 3383, 3209, 2975, 2961, 2230, 1700, 1597, 1449, 1186, 1065, 915, 716 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 7.5 Hz, 2 H), 7.63 (t, *J* = 8.2 Hz, 3 H), 7.55 (d, *J* = 8.2 Hz, 2 H), 7.45 (t, *J* = 7.9 Hz, 2 H), 5.23 (td, *J* = 12.6, 4.1 Hz, 1 H), 4.44 (d, *J* = 4.1 Hz, 1 H), 1.20 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 188.5 (t, *J* = 30.1 Hz), 138.2, 135.0, 132.2, 131.6 (t, *J* = 2.7 Hz), 130.7, 130.1 (t, *J* = 3.3 Hz), 128.8, 118.2, 116.0 (t, *J* = 262.7 Hz), 113.2, 60.4 (dd, *J* = 24.9, 22.5 Hz), 56.4, 22.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -104.5 (dd, *J* = 291.7, 11.4 Hz, 1 F), -106.5 (dd, *J* = 291.7, 12.9 Hz, 1 F) ppm. MS (ESI): *m*/*z* (%) = 391 [M + H]⁺, 413 [M + Na]⁺. HRMS (ESI): Calcd. for C₂₀H₂₀F₂N₂NaO₂S [M + Na]⁺: 413.1111, found 413.1106.

Compound (*Rc*,*Rs*)-6g: 62 mg, yield 73%; colorless oil. $[a]_{D}^{28} = -44.6$ (*c* = 1.00, CH₃OH). IR (film): $\tilde{v} = 3199$, 2958, 2923, 1701, 1598, 1474, 1449, 1182, 1066, 921, 756, 718 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (d, *J* = 7.4 Hz, 2 H), 7.62–7.58 (m, 1 H), 7.55–7.52 (m, 1 H), 7.46–7.42 (m, 2 H), 7.39–7.35 (m, 1 H), 7.28–7.27 (m, 2 H), 5.87–5.80 (m, 1 H), 4.34 (d, *J* = 5.6 Hz, 1 H), 1.15 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.8$ (t, *J* = 29.4 Hz), 135.1, 134.6, 132.0 (t, *J* = 2.1 Hz), 131.6 (d, *J* = 1.6 Hz), 130.4, 130.1, 130.0, 129.8, 128.7, 126.9, 116.6 (t, *J* = 261.7 Hz), 56.8 (dd, *J* = 25.3, 22.9 Hz), 56.4, 22.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -103.8$ (dd, *J* = 284.3, 8.3 Hz, 1 F), -108.1 (dd, *J* = 284.3, 15.9 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 400 [M + H]⁺, 422 [M + Na]⁺. HRMS (ESI): Calcd. for C₁₉H₂₀ClF₂NNaO₂S [M + Na]⁺: 422.0769, found 422.0764.

Compound (*Rc,Rs*)-6h: 65 mg, yield 73%; white solid; m.p. 83– 85 °C. [*a*]²⁸₂ = -38.1 (*c* = 0.75, CH₃OH). IR (KBr): \tilde{v} = 3237, 2957, 2924, 2854, 1698, 1472, 1450, 1400, 1191, 1129, 1070, 1023, 755, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (d, *J* = 7.9 Hz, 2 H), 7.62–7.52 (m, 3 H), 7.45 (t, *J* = 7.9 Hz, 2 H), 7.32 (t, *J* = 7.6 Hz, 1 H), 7.21–7.17 (m, 1 H), 5.87–5.79 (m, 1 H), 4.33 (d, *J* = 5.2 Hz, 1 H), 1.15 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 188.7 (t, *J* = 29.3 Hz), 134.7, 133.3 (d, *J* = 1.6 Hz), 133.2, 132.0 (t, *J* = 2.1 Hz), 130.6, 130.4, 130.2 (t, *J* = 3.3 Hz), 128.7, 127.6, 125.6, 116.6 (t, *J* = 261.8 Hz), 59.4 (dd, *J* = 24.8, 23.5 Hz), 56.4, 22.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = –103.6 (d, *J* = 285.4 Hz, 1 F), –107.9 (dd, *J* = 285.4, 13.9 Hz, 1 F) ppm. MS (ESI): *m*/*z* (%) = 444 [M + H]⁺, 466 [M + Na]⁺. HRMS (MALDI): Calcd. for C₁₉H₂₁BrF₂NO₂S [M + H]⁺: 444.0444, found 444.0439.

Compound (*Rc,Rs*)-6i: 64 mg, yield 73%; white solid; m.p. 141– 145 °C. [*a*]_D²⁶ = -58.4 (*c* = 1.10, CHCl₃). IR (KBr): \tilde{v} = 3433, 3252, 2924, 1705, 1693, 1597, 1489, 1449, 1401, 1197, 1184, 1087, 1067, 1052, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.6 Hz, 2 H), 7.62–7.50 (m, 5 H), 7.50–7.38 (m, 6 H), 7.34 (t, *J* = 7.3 Hz, 1 H), 5.24 (td, *J* = 12.4, 4.2 Hz, 1 H), 4.40 (d, *J* = 4.2 Hz, 1 H), 1.23 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 189.2 (t, *J* = 29.7 Hz), 142.0, 140.2, 134.6, 132.2, 131.5, 130.3, 130.1 (t, *J* = 3.2 Hz), 128.8, 128.7, 127.6, 127.2, 127.1, 116.5 (t, *J* = 260.3 Hz), 60.7 (t, *J* = 23.4 Hz), 56.3, 22.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = –106.3 (d, *J* = 12.4 Hz, 2 F) ppm. MS (ESI): m/z (%) = 442 [M + H]⁺, 464 [M + Na]⁺. HRMS (MALDI): Calcd. for C₂₅H₂₆F₂NO₂S [M + H]⁺: 442.1652, found 442.1647.

Compound (*Rc*,*Rs*)-6j: 50 mg, yield 68 %; colorless oil. $[a]_{28}^{28} = -33.1$ (*c* = 0.53, CHCl₃). IR (film): $\tilde{v} = 3201$, 2956, 2866, 1701, 1598, 1449, 1279, 1215, 1066, 1014, 885, 688 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99$ (d, *J* = 7.4 Hz, 2 H), 7.60 (d, *J* = 7.5 Hz, 1 H), 7.45 (t, *J* = 7.8 Hz, 2 H), 7.43–7.32 (m, 1 H), 6.40 (d, *J* = 3.2 Hz, 1 H), 6.33 (dd, *J* = 3.2, 1.8 Hz, 1 H), 5.41–5.21 (m, 1 H), 4.21 (d, *J* = 7.1 Hz, 1 H), 1.17 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.8$ (t, *J* = 29.5 Hz), 146.6, 143.4, 134.6, 132.0 (t, *J* = 2.3 Hz), 130.0 (t, *J* = 3.2 Hz) 128.7, 115.7 (t, *J* = 262.3 Hz), 111.2, 110.7, 56.6, 55.9 (t, *J* = 25.4 Hz), 22.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -105.7$ (t, *J* = 13.0 Hz, 2 F) ppm. MS (ESI): *m/z* (%) = 356 [M + H]⁺. HRMS (MALDI): Calcd. for C₁₇H₂₀F₂NO₃S [M + H]⁺: 356.1132, found 356.1126.

Compound (*Rc,Rs*)-6k: 46 mg, yield 56%; white solid, m.p. 64– 66 °C. [*a*]₂₇²⁷ = -45.3 (*c* = 0.98, CH₃OH). IR (KBr): \tilde{v} = 3240, 2924, 2853, 1599, 1450, 1399, 1070, 1011, 766, 703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (br., s, 1 H), 7.85 (t, *J* = 8.5 Hz, 4 H), 7.68 (d, *J* = 6.0 Hz, 1 H), 7.55–7.42 (m, 4 H), 7.35 (t, *J* = 7.9 Hz, 2 H), 6.13 (br., s, 1 H), 4.53 (d, *J* = 4.7 Hz, 1 H), 1.17 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 189.5 (t, *J* = 29.8 Hz), 134.4, 133.7, 132.4, 132.0, 129.9 (t, *J* = 3.4 Hz), 129.8 (d, *J* = 3.1 Hz), 128.9, 128.6, 128.1, 127.5, 126.8, 125.8, 124.9, 122.9, 117.1 (t, *J* = 262.1 Hz), 56.3, 55.2, 22.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -103.3 (dd, *J* = 282.3, 6.5 Hz, 1 F), -106.4 (d, *J* = 282.3 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 416 [M + H]⁺, 438 [M + Na]⁺. HRMS (MALDI): Calcd. for C₂₃H₂₄F₂NO₂S [M + H]⁺: 416.1496, found 416.1490.

Compound (*Rc*,*Rs*)-61: 49 mg, yield 63 %; colorless oil. $[a]_{D}^{26} = -32.4$ (*c* = 0.64, CHCl₃). IR (film): $\tilde{v} = 3231$, 3027, 2960, 2867, 1701, 1598, 1496, 1451, 1063, 718 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.04 (d, *J* = 7.6 Hz, 2 H), 7.60 (t, *J* = 7.4 Hz, 1 H), 7.45 (t, *J* = 7.8 Hz, 2 H), 7.26 (t, *J* = 7.2 Hz, 2 H), 7.16 (dd, *J* = 6.2, 5.3 Hz, 3 H), 4.01–3.93 (m, 1 H), 3.91 (t, *J* = 8.6 Hz, 1 H), 3.02–2.93 (m, 1 H), 2.80–2.61 (m, 1 H), 2.17–1.93 (m, 2 H), 1.24 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 189.3 (dd, *J* = 30.8, 30.2 Hz), 140.5, 134.5, 132.1 (t, *J* = 2.6 Hz), 130.1 (t, *J* = 3.2 Hz), 128.7, 128.5, 128.4, 126.2, 116.9 (t, *J* = 260.4 Hz), 58.7 (t, *J* = 23.9 Hz), 56.9, 31.9, 31.4 (t, *J* = 2.92.5, 11.9 Hz, 1 F), -106.1 (dd, *J* = 292.5, 11.3 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 394 [M + H]⁺. HRMS (MALDI): Calcd. for C₂₁H₂₆F₂NO₂S [M + H]⁺: 394.1652, found 394.1647.

Compound (*Rc*,*Rs*)-6m: 54 mg, yield 64%; white solid; m.p. 110– 112 °C. $[a]_{D}^{27} = -52.1$ (c = 0.98, CH₃OH). IR (KBr): $\tilde{v} = 3196$, 2981, 2961, 1699, 1597, 1492, 1450, 1181, 1076, 721 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 7.6 Hz, 2 H), 7.61 (t, J =7.4 Hz, 1 H), 7.46 (dd, J = 10.9, 4.6 Hz, 2 H), 7.29–7.24 (m, 4 H), 6.71 (d, J = 15.9 Hz, 1 H), 6.09 (dd, J = 15.9, 8.4 Hz, 1 H), 4.82– 4.70 (m, 1 H), 4.14 (d, J = 4.8 Hz, 1 H), 1.20 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 188.7$ (t, J = 29.3 Hz, 1 H), 134.7, 133.3 (d, J = 1.6 Hz), 133.2, 132.0 (t, J = 2.1 Hz), 130.6, 130.4, 130.2 (t, J = 3.3 Hz), 128.7, 127.6, 125.6, 116.6 (t, J = 261.8 Hz), 59.4 (dd, J = 24.8, 23.5 Hz), 56.4, 22.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -105.5$ (dd, J = 288.8, 11.1 Hz, 1 F), -107.4 (dd, J =288.8, 11.4 Hz, 1 F) ppm. MS (ESI): m/z (%) = 426 [M + H]⁺. HRMS (MALDI): Calcd. for C₂₁H₂₃ClF₂NO₂S [M + H]⁺: 426.1106, found 426.1101.

Compound (*Rc*,*Rs*)-6n: 57 mg, yield 67%; colorless oil. $[a]_D^{27} = -58.5$ (*c* = 1.03, CHCl₃). IR (film): $\tilde{v} = 3286$, 2961, 1868, 2845, 1686, 1598, 1572, 1512, 1493, 1365, 1267, 1180, 1058, 1016, 911 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.8 Hz, 2 H), 7.41–7.29 (m, 4 H), 6.92 (d, *J* = 9.0 Hz, 2 H), 5.15 (td, *J* = 12.5, 3.9 Hz, 1 H), 4.46 (d, *J* = 3.9 Hz, 1 H), 3.87 (s, 3 H), 1.22 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 187.0 (t, *J* = 29.5 Hz), 164.8, 135.1, 132.8 (t, *J* = 3.5 Hz), 131.4, 131.3, 128.7, 124.7 (t, *J* = 2.5 Hz), 116.4 (t, *J* = 261.9 Hz), 114.1, 60.3 (dd, *J* = 24.7, 22.9 Hz), 56.2, 55.6, 22.4 ppm. ¹⁹F NMR (282 MHz, CDCl₃): δ = –104.9 (dd, *J* = 284.9, 11.7 Hz, 1 F), –106.5 (dd, *J* = 284.9, 12.8 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 430 [M + H]⁺. HRMS (MALDI): Calcd. for C₂₀H₂₃ClF₂NO₃S [M + H]⁺: 430.1055, found 430.1050.

Compound (*Rc*,*Rs*)-60: 52 mg, yield 60%; colorless oil. $[a]_D^{26} = -57.6$ (*c* = 1.02, CHCl₃). IR (film): $\tilde{v} = 3222$, 2961, 2868, 1693, 1588, 1491, 1313, 1285, 1183, 1080, 1014, 731 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.90$ (d, *J* = 8.5 Hz, 2 H), 7.43 (d, *J* = 8.7 Hz, 2 H), 7.38–7.27 (m, 4 H), 5.17 (td, *J* = 12.5, 4.3 Hz, 1 H), 4.36 (d, *J* = 4.3 Hz, 1 H), 1.22 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 187.8$ (t, *J* = 30.4 Hz), 141.6, 135.3, 131.4 (t, *J* = 3.4 Hz), 131.2, 131.1, 130.2 (t, *J* = 2.6 Hz), 129.2, 128.8, 116.2 (t, *J* = 261.8 Hz), 60.1 (t, *J* = 22.8 Hz), 56.3, 22.4 ppm. ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -105.5$ (dd, *J* = 287.8, 12.0 Hz, 1 F), -106.9 (dd, *J* = 287.8, 12.8 Hz, 1 F) ppm. MS (ESI): *m/z* (%) = 434 [M + H]⁺. HRMS (MALDI): Calcd. for C₁₉H₂₀Cl₂F₂NO₂S [M + H]⁺: 434.0560, found 434.0554.

Compound (*Rc*,*Rs*)-6p: 63 mg, yield 72%; pale yellow oil. $[a]_{25}^{25} = -50.9$ (c = 0.88, CHCl₃). IR (film): $\tilde{v} = 3230$, 3027, 2958, 2868, 1739, 1597, 1494, 1455, 1365, 1195, 1071, 1015, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32$ (d, J = 8.7 Hz, 2 H), 7.25 (dd, J = 9.9, 8.2 Hz, 4 H), 7.17 (t, J = 7.3 Hz, 1 H), 7.06 (d, J = 6.9 Hz, 2 H), 4.94 (td, J = 12.5, 4.4 Hz, 1 H), 4.15 (d, J = 4.4 Hz, 1 H), 2.62–2.46 (m, 3 H), 2.44–2.30 (m, 1 H), 1.83–1.75 (m, 2 H), 1.19 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.7$ (dd, J = 30.6, 28.3 Hz), 140.8, 135.4, 131.2 (d, J = 3.5 Hz), 130.8, 128.9, 128.4, 128.3, 126.1, 114.8 (t, J = 260.0 Hz), 59.3 (t, J = 23.4 Hz), 56.3, 36.9, 34.5, 23.7, 22.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -112.5$ (dd, J = 269.7, 12.0 Hz, 1 F), -115.2 (dd, J = 269.7, 13.0 Hz, 1 F) ppm. MS (ESI): m/z (%) = 442 [M + H]⁺, 464 [M + Na]⁺. HRMS (MALDI): Calcd. for C₂₂H₂₇ClF₂NO₂S [M + H]⁺: 442.1419, found 442.1414.

Compound (*R***)-7:** 28 mg, yield 76%; this is a known compound.^[15] Colorless oil. [*a*]_D²⁷ = -18.0 (*c* = 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 7.7 Hz, 2 H), 7.60 (t, *J* = 7.4 Hz, 1 H), 7.51–7.40 (m, 4 H), 7.33–7.22 (m, 2 H), 4.68 (dd, *J* = 16.6, 8.8 Hz, 1 H), 1.79 (br., s, 2 H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -105.1 (dd, *J* = 282.7, 8.2 Hz, 1 F), -112.8 (dd, *J* = 282.7, 16.9 Hz, 1 F) ppm.

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC) for financial support (grant numbers 21172243 and 21421002).

 a) Fluorine in Bioorganic Chemistry (Eds.: J. T. Welch, S. Eswarakrishnan), John Wiley & Sons, New York, 1991; b) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369; c) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886; d) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330; e) T. Hiyama, Organofluorine Compounds, Chemistry and Applications (Ed.: H. Yamamoto), Springer-Verlag, Berlin, Heidelberg, 2000; f) R. E. Banks, B. E. Smart, J. C. Tatlow (Eds.), Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994; g) I. Ojima, J. R. McCarthy, J. T. Welch (Eds.), Biomedical Frontiers of Fluorine Chemistry, American Chemical Society, Washington DC, 1996; h) B. E. Smart, J. Fluorine Chem. 2001, 109, 3–11; i) D. O'Hagan, H. S. Rzepa, Chem. Commun. 1997, 645–652; j) M. Schlosser, Angew. Chem. Int. Ed. 1998, 37, 1496–1513; Angew. Chem. 1998, 110, 1538–1556; k) K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford, UK, U. K. 2006; l) W. R. Dolbier, J. Fluorine Chem. 2005, 126, 157–163; m) D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308–319.

- [2] a) J. M. White, A. R. Tunoori, B. J. Turunen, G. I. Georg, J. Org. Chem. 2004, 69, 2573–2576; b) T. Umemoto, R. P. Singh, Y. Xu, N. Saito, J. Am. Chem. Soc. 2010, 132, 18199–18205; c) C. Zhou, J. Li, B. Lu, C. Fu, S. Ma, Org. Lett. 2008, 10, 581–583; d) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662–1663; e) J. Nie, H.-W. Zhu, H.-F. Cui, M.-Q. Hua, J.-A. Ma, Org. Lett. 2007, 9, 3053–3056.
- [3] For a review on gem-difluoromethylene compounds, see: a) M. J. Tozer, T. F. Herpin, Tetrahedron 1996, 52, 8619–8683. For examples on the utility of β-amino α,α-difluoro carbonyl compounds, also see: b) S. Thaisrivongs, H. J. Schostarez, D. T. Pals, S. R. Turner, J. Med. Chem. 1987, 30, 1837–1842; c) K. Nakayama, H. C. Kawato, H. Inagaki, R. Nakajima, A. Kitamura, K. Someya, T. Ohta, Org. Lett. 2000, 2, 977–980; d) I. Vergely, N. Boggetto, V. Okochi, S. Golpayegani, M. Reboud Ravaux, R. Kobaiter, R. Joyeau, M. Wakselman, Eur. J. Med. Chem. 1995, 30, 199–208; e) V. Peddie, M. Pietsch, K. M. Bromfield, R. N. Pike, P. J. Duggan, A. D. Abell, Synthesis 2010, 1845–1859.
- [4] a) K. Uoto, S. Ohsuki, H. Takenoshita, T. Ishiyama, S. Iimura, Y. Hirota, I. Mitsui, H. Terasawa, T. Soga, *Chem. Pharm. Bull.* 1997, 45, 1793–1804; b) H. Terasawa, T. Soga, K. Uoto, JP07233159, 1995; c) D. F. Hook, F. Gessier, C. Noti, P. Kast, D. Seebach, *ChemBioChem* 2004, 5, 691–706.
- [5] T. Yoshinari, F. Gessier, C. Noti, A. K. Beck, D. Seebach, *Helv. Chim. Acta* 2011, 94, 1908–1942.
- [6] a) A. Niida, K. Tomita, M. Mizumoto, H. Tanigaki, T. Terada, S. Oishi, A. Otaka, K. Inui, N. Fujii, Org. Lett. 2006, 8, 613– 616; b) C. V. Christianson, T. J. Montavon, G. M. Festin, H. A. Cooke, B. Shen, S. D. Bruner, J. Am. Chem. Soc. 2007, 129, 15744–15745; c) S. Oishi, H. Kamitani, Y. Kodera, K. Watanabe, K. Kobayashi, T. Narumi, K. Tomita, H. Ohno, T. Naito, E. Kodama, M. Matsuoka, N. Fujii, Org. Biomol. Chem. 2009, 7, 2872–2877; d) T. Poisson, M.-C. Belhomme, X. Pannecoucke, J. Org. Chem. 2012, 77, 9277–9285.
- [7] a) S. Jonet, F. Cherouvrier, T. Brigaud, C. Portella, *Eur. J. Org. Chem.* 2005, 4304–4312; b) O. Kitagawa, T. Taguchi, Y. Kobayashi, *Tetrahedron Lett.* 1988, 29, 1803–1806; c) K. Iseki, Y. Kuroki, D. Asada, M. Takahashi, S. Kishimoto, Y. Kobayashi, *Tetrahedron* 1997, 53, 10271–10280.
- [8] a) C. Guerot, B. H. Tchitchanov, H. Knust, E. M. Carreira, Org. Lett. 2011, 13, 780–783; b) E. A. Hallinan, J. Fried, Tetrahedron Lett. 1984, 25, 2301–2302; c) H. Fukuda, T. Kitazume, Heterocycles 1997, 46, 275–285; d) T. T. Curran, J. Org. Chem. 1993, 58, 6360–6363; e) A. Tarui, H. Nishimura, T. Ikebata, A. Tahira, K. Sato, M. Omote, H. Minami, Y. Miwa, A. Ando, Org. Lett. 2014, 16, 2080–2083; f) C. Q. Fontenelle, M. Conroy, M. Light, T. Poisson, X. Pannecoucke, B. Linclau, J. Org. Chem. 2014, 79, 4186–4195.
- [9] H. Yao, C.-R. Cao, M. Jiang, J.-T. Liu, J. Fluorine Chem. 2013, 156, 45–50.
- [10] K. P. Guzen, A. S. Guarezemini, A. T. G. Orfão, R. Cella, C. M. P. Pereira, H. A. Stefani, *Tetrahedron Lett.* 2007, 48, 1845–1848.
- [11] a) F. A. Davis, P. Zhou, B.-C. Chen, Chem. Soc. Rev. 1998, 27, 13–18; b) F. A. Davis, R. E. Reddy, J. M. Szewczyk, J. Org. Chem. 1995, 60, 7037–7039; c) D. A. Cogan, G. Liu, K. Kim, B. J. Backes, J. A. Ellman, J. Am. Chem. Soc. 1998, 120, 8011–8019; d) T. P. Tang, J. A. Ellman, J. Org. Chem. 1999, 64, 12–13; e) T. Taguchi, O. Kitagawa, S. Yoshimitsu, S. Ohkawa, A. Hashimoto, Y. Iitaka, Y. Kobayashi, Tetrahedron Lett. 1988,

29, 5291-5294; f) M. R. Angelastro, P. Bey, S. Mehdi, N. P. Peet, *Bioorg. Med. Chem. Lett.* **1992**, *2*, 1235-1238.

- [12] a) D. Staas, K. L. Savage, C. F. Homnick, N. N. Tsou, R. Ball, J. Org. Chem. 2002, 67, 8276–8279; b) V. A. Soloshonok, H. Ohkura, A. Sorochinsky, N. Voloshin, A. Markovsky, M. Belik, T. Yamazaki, *Tetrahedron Lett.* 2002, 43, 5445–5448; c) A. Sorochinsky, N. Voloshin, A. Markovsky, M. Belik, N. Yasuda, H. Uekusa, T. Ono, D. O. Berbasov, V. A. Soloshonok, J. Org. Chem. 2003, 68, 7448–7454.
- [13] Z. T. Jing, Y. G. Huang, F. L. Qing, Chin. Chem. Lett. 2011, 22, 919–922.
- [14] a) M. T. Robak, M. A. Herbage, J. A. Ellman, *Chem. Rev.* 2010, *110*, 3600–3740; b) F. Ferreira, C. Botuha, F. Chemla, A. Perez-Luna, *Chem. Soc. Rev.* 2009, *38*, 1162–1186; c) F. A. Davis, *J. Org. Chem.* 2006, *71*, 8993–9003.
- [15] W. Kashikura, K. Mori, T. Akiyama, Org. Lett. 2011, 13, 1860– 1863.

Received: November 2, 2014 Published Online: January 8, 2015