Metallkomplexe von biologisch wichtigen Liganden, CVI [1]. Metallkomplexe von Donor-substituierten Oxazolin-5-onen sowie von Bis(oxazolin-5-onen)

Metal Complexes of Biologically Important Ligands CVI [1]. Metal Complexes of Donor Substituted Oxazolones and of Bis(oxazolones)

Markus Prem, Werner Bauer, Kurt Polborn, Wolfgang Beck*

Institut für Anorganische Chemie der Ludwig-Maximilians-Universität,

Meiserstr. 1, D-80333 München

Herrn Professor Hans-Dietrich Stachel zum 70. Geburtstag gewidmet

Z. Naturforsch. 53 b, 965–972 (1998); eingegangen am 11. Mai 1998

Oxazolones, Nickel, Palladium, Platinum, Copper, Ruthenium

A series of chelate complexes 1-12 of Cu(II), Ni(II), Pd(II), and Ru(III) with the anion of 2-(2'-hydroxyphenyl)-5(4H)-oxazolone and with 2-(2'-aminophenyl)-5(4H)-oxazolone were prepared from metal salts or from chloro-bridged complexes $[(R_3P)MCl_2]_2$ (M = Pd, Pt) and $[(p-cymene)RuCl_2]_2$. Nucleophilic addition of α -amino acid esters to the bis-chelate complexes M(oxophenyloxazolone)₂ (M = Ni, Cu) gave the dipeptide derivatives 13 - 18. Dinuclear Pd(II) and Pt(II) chelate complexes 19 - 23 were obtained from phenylene- and ethylenebridged bis(oxazolones). The structures of (Et₃P)(Cl)Pd(O,N-oxophenyloxazolone) (6) and of $Cl_2(Et_3P)Pt(2,2'-phenylene-bis(4-methyloxazolone)Pt(PEt_3)Cl_2 (20) were determined by X-ray diffraction. In complex 20 a close proximity of two phenylene H atoms to the metal is observed.$

Im Zuge unserer Arbeiten über metallorganische Verbindungen von α -Aminosäuren und Peptiden interessierte uns auch das komplexchemische Verhalten von Oxazolin-5-onen, die sich als aktivierte Aminosäurederivate auffassen lassen [2]. Vor kurzem haben wir über Palladium(II)- und Platin(II)-Komplexe von 2-Phenyloxazolin-5-on [3] sowie über eine Reihe von metallorganischen 2-Phenyloxazolin-5-onen und Reaktionen an diesen Liganden

* Sonderdruckanforderungen an Prof. Dr. W. Beck; E-Mail: wbe@anorg.chemie.uni-muenchen.de. berichtet [4]. Im folgenden werden Metallkomplexe von Donor-substituierten Oxazolin-5-onen sowie von phenylen- und ethylen-verbrückten Oxazolin-5-onen vorgestellt.

Ergebnisse und Diskussion

Als Liganden wurden die 2R-4R-Oxazolin-5-one A - G eingesetzt.

 Metallkomplexe von 2-(2'-Hydroxyphenyl)oxazolin-5-on (A) und 2-(2'-Aminophenyl)-4-R-oxazolin-5-on (B, C)

Durch Umsetzung dieser Oxazolin-5-one mit Metallacetaten, Na₂PdCl₄, Metallchloriden oder mit den chloroverbrückten Verbindungen [(R₃P)-(Cl)M(μ -Cl)]₂ (M = Pd, Pt) und [(p-Cymol)(Cl)-Ru(μ -Cl)]₂ wurden die Chelat-Komplexe **1**-**12** erhalten.

Die Komplexe 1-3 sowie 8-11 sind in den gängigen Lösemitteln kaum löslich und liegen im Festkörper vermutlich unter Erhöhung der Koordinationszahl von 4 auf 6 als Koordinationspolymere vor. In den IR-Spektren von 1-12 sind die intensiven Absorptionen der Carbonyl- (1850 cm⁻¹) und

Κ

0932–0776/98/0900–0965 \$ 06.00 © 1998 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Bindungsabstände in Å	:				
Pd(1)-Cl(1)	2.008(2)	Pd(1)-N(1)	2.071(3)	Pd(1)-P(1)	2.2494(11)
O(1)-C(1)	1.315(4)	N(1)-C(7)	1.293(4)	Pd(1)-O(1)	2.008(2)
N(1)-C(9)	1.448(4)	C(8)-C(9)	1.497(5)	O(3)-C(8)	1.186(4)
O(2)- $C(8)$	1.387(4)	O(2)-C(7)	1.3/8(4)		
Bindungswinkel in T:	00.04(10)	Q(1) D1(1) D(1)	00 22(7)		01.04/0
O(1)-Pd(1)-N(1) P(1)-Pd(1)-Cl(1)	89.04(10) 89.68(4)	O(1)-Pd(1)-P(1) N(1)-Pd(1)-P(1)	89.23(7)	N(1)-Pd(1)-Cl(1) $O(1)_Pd(1)_Cl(1)$	91.94(8) 175.62(0)
C(1)-O(1)-Pd(1)	124.9(2)	$\Pi(1)^{-1} \Pi(1)^{-1}(1)$	177.02(0)	O(1) - 1 u(1) - O(1)	175.02(9)
Torsionswinkel in °:	(-)				
N(1)-Pd(1)-O(1)-C(1)	27.6(3)	Pd(1)-N(1)-C(7)-O(2)	176.3(2)	O(2)-C(8)-C(9)-N(1)	-3.5(4)
C(7)-O(2)-C(8)-C(9)	3.5(4)	Pd(1)-N(1)-C(7)-C(6)	-5.0(5)	O(1)-C(1)-C(6)-C(7)	6.0(5)
C(7)-N(1)-C(9)-C(8)	2.2(4)	Pd(1)-N(1)-C(9)-C(8)	-174.0(2)	C(2)-C(1)-C(6)-C(7)	-177.1(3)
C(5)-C(6)-C(7)-O(2)	13.3(5)	C(1)-C(6)-C(7)-N(1)	12.6(5)	C(8)-O(2)-C(7)-N(1)	-2.3(4)
0	0				
\sim \checkmark	Ľ	R	<i>,</i>		
-O N O	CI, N N		ò		
M	M)	M			
of a contraction of the contract	L O	CI NH2			
0					
Verb. M	Verb. L	M Verb. R	М		
1 Ni	4 Et ₃ P	Pt 8 CH(CH ₃)2 Ni		
2 Cu	5 nBu ₂ P	Pd 9 CH(CH ₃	$c_{\rm L}$		
3 Pd	6 EtaP	Pd 10 H	Cu		
	7 p-Cymol	Ru 11 H	Pd		
	1 2	12 CH(CH ₃) ₂ Pd		
\bigcirc	\sim				
C14		CI1			
		9 9			
			<u></u>		
C12			C8	03	
		Poi Ni			
			C7		
C13	21		02	1	
1 GAD		C6 2	C5		
0-H-1)	0)	
	Ū				
/ C11 0 C10				Abb. 1. Molek	ülstruktur von
Ő Ö		C2	C4	6 im Kristall.	
		C3			

Tab. I. Ausgewählte Bindungsparameter von 6.

Imin-Gruppen (1630 cm^{-1}) charakteristisch (vgl. experimentellen Teil).

Für 4-12 werden in den IR-Spektren auch die ν (Metall-Cl)-Banden beobachtet. Im ¹H-NMR-Spektrum von 7 lassen sich die diastereotopen α -Methylenprotonen des Oxazolinonringes sehr gut unterscheiden.

Zu **1** - **6** analoge Komplexe wurden von Bolm [5] sowie Gómez-Simon *et al.* [6] mit 4,5-Dihydro-2-(2'-hydroxyphenyl)-oxazolinen beschrieben.

Die Kristallstruktur von 6 wurde röntgenographisch bestimmt (Tab. I, Abb. 1). Im Molekül von 6 (Abb. 1) mit annähernd quadratisch planarer Umgebung am Pd-Atom sind die N- und P-

Atome *trans* angeordnet. Diese Struktur wurde auch für (Ph₃P)(Cl)Pd(4,5-dihydro-2-(2'-oxophenyl)oxazolin) mit sehr ähnlichen Pd-Ligand-Bindungslängen gefunden [6]. Aus Abb. 1 ist ersichtlich, daß der Phenylring des Chelat-Liganden gegen den Oxazolinon-Ring verdrillt ist.

Durch nucleophilen Angriff von α -Aminosäureestern an 2-Oxazolin-5-one sind Dipeptide zugänglich [7]. Wie mit Iridium-metallierten Oxazolinonen [4] gelingt auch die Ringöffnung der koordinierten Oxazolinone in **1** - **3** mit α -Aminosäureestern, wobei die O,O-Chelat-Komplexe **13** - **18** gefaßt werden. Bei diesen Reaktionen wurde nach Steglich [7] DMAP (*p*-Dimethylaminopyridin) als Katalysator zugesetzt.

Das Ende der Reaktion zu 13 - 18 läßt sich IR-spektroskopisch am Verschwinden der Oxazolinon-Absorption bei 1850 cm⁻¹ und dem Auftreten einer neuen Amid-Bande bei 1600 cm⁻¹ feststellen. Die Komplexe **13 - 18** zeigen im IR-Spektrum drei charakteristische Absorptionen: Die Bande der "freien" Esterfunktion (1730 - 1750 cm⁻¹), die Absorption der nicht koordinierten Carbonylgruppe im für Peptide typischen Bereich (um 1650 cm⁻¹) sowie die Absorption bei 1600 cm⁻¹, die durch Koordination der Benzoyl-CO-Funktion deutlich nach kleineren Wellenzahlen verschoben ist [8].

In den ¹H-NMR-Spektren von **13** - **15** lassen sich keine Diastereomeren erkennen. Die ¹H-NMR-Signale können eindeutig zugeordnet werden (vgl. experimentellen Teil).

Auch die ¹³C-NMR-Spektren von **13** und **14** zeigen die erwarteten Signale.

Tab. II. Ausgewählte Bindungsabstände [Å] und -winkel [°] von **20**.

Pt(1)-N(1)	2.117(5)	N(1)-C(3)	1.486(8)
Pt(1)-C(5)	3.518(2)	Pt(1)-P(2)	2.219(2)
C(1)-C(4)	1.456(9)	Pt(1)-H(5) (ber.)	2.889(7)
Pt(1)-Cl(1)	2.285(2)	C(4)-C(6)	1.386(8)
N(1)-C(1)	1.281(8)	Pt(1)-Cl(2)	2.302(2)
C(4)-C(5)	1.387(9)	C(5)-C(6)	1.371(9)
C(6)-C(4)	1.386(8)	O(2)-C(2)	1.183(8)
N(1)-Pt(1)-P(2)	178.47(14)	C(10)-P(2)-C(8)	106.3(4)
N(1)-Pt(1)-H(5)	66.6(2)	N(1)-Pt(1)-Cl(1)	85.66(14)
C(12)-P(2)-C(8)	105.0(4)	P(2)-Pt(1)-H(5)	114.9(2)
P(2)-Pt(1)-Cl(1)	93.79(7)	C(10)-P(2)-Pt(1)	111.9(3)
Cl(1)-Pt(1)-H(5)	116.92(14)	N(1)-Pt(1)-Cl(2)	91.77(14)
C(8)-P(2)-Pt(1)	115.2(3)	Cl(2)-Pt(1)-H(5)	63.93(13)
P(2)-Pt(1)-Cl(2)	88.72(6)	C(1)-N(1)-C(3)	107.9(5)
C(10)-P(2)-C(12)	105.0(4)	Cl(1)-Pt(1)-Cl(2)	176.53(7)
C(6)-C(4)-C(5)	119.4(6)	C(6)-C(4)-C(1)	119.4(6)
C(5)-C(4)-C(1)	121.1(5)	C(6)-C(5)-C(4)	120.3(6)
C(5)-C(6)-C(4)	120.2(6)		

Metallkomplexe mit verbrückten Bis(oxazolin-5onen) D - G

Die Umsetzungen dieser Oxazolin-5-one mit den chlorverbrückten Komplexen $[(R_3P)(Cl)M(\mu-Cl)]_2$ (M = Pd, Pt) liefern die Verbindungen **19 - 23**.

Die Komplexe zeigen im IR-Spektrum die charakteristische Absorption der Carbonyl- (um 1850 cm⁻¹) und der C=N-Gruppen (um 1650 cm⁻¹). Im Bereich von 350 cm⁻¹ erscheint die starke Bande der ν_{as} -Schwingung der *trans*-Cl-Pt-Cl-Gruppierung. Im ¹H-NMR-Spektrum von **19 - 21** werden deutliche Tieffeld-Verschiebungen für die Signale der aromatischen CH-Gruppen gegenüber den freien Liganden beobachtet. Dies deutet auf eine räumliche Nähe der C-H-Bindungen zum Platin-Atom hin [3, 9]. Ebenso sind die ¹³C-NMR-Signale der aromatischen C-Atome von **19 - 21** tieffeldverschoben.

Die Röntgenstrukturanalyse (Tab. II, Abb. 2) von **20** zeigt, daß das Molekül ein Symmetriezentrum besitzt. Der Abstand Pt…H-5 liegt mit 289 pm in einem Bereich, wie er für andere Komplexe mit Pt…HC(Phenyl)-Wechselwirkung gefunden wurde [3, 9].

Experimenteller Teil

Die chlorverbrückten Komplexe $[(R_3P)(Cl)M(\mu-Cl)]_2$ [10] und $[(p-Cymol)(Cl)Ru(\mu-Cl)]_2$ [11] wurden nach Literaturangaben hergestellt.

Die 2-Oxazolin-5-one **A** - **G** wurden in Anlehnung an Literaturvorschriften [12] erhalten.

Allgemeine Synthesevorschrift für die Komplexe 1 - 3

Es werden nacheinander 0.50 mmol Metallacetat (M = Cu, Ni, Zn) und 1.00 mmol Oxazolinon A (177 mg) in ein Schlenkrohr eingewogen und mit *ca*. 15 - 20 ml Methanol versetzt. Man erhält eine milchige Suspension, die *ca*. 3 h bei R. T. gerührt wird. Der Niederschlag wird mittels Zentrifugieren pelletiert, mit Ether und Pentan gewaschen und bei 60 °C 5 h im Vak. getrocknet.

1: Grünes Pulver. – IR (KBr): $\nu = 1859$ s, 1834s (C=O), 1626s (C=N) cm⁻¹.

Allgemeine Synthesevorschrift für die Komplexe 4 - 7

Es werden nacheinander 0.50 mmol des entsprechenden chloroverbrückten Metallkomplexes, 1.00 mmol des Oxazolinons A (177 mg) und 1.00 mmol Natriumacetat (82 mg) in ein Schlenkrohr eingewogen, mit 10-20 ml Dichlormethan versetzt und 15 h bei R. T. gerührt. Der gebildete Niederschlag (NaCl) wird abzentrifugiert und verworfen. Die so erhaltene klare Lösung engt man im Vak. ein und suspendiert den Rückstand in Pentan. Der Niederschlag wird mittels Zentrifugieren pelletiert, mit Pentan und Ether gewaschen und bei 60 °C 5 h im Vak. getrocknet.

4: Eduktkomplex [PtCl₂(PEt₃)]₂. Hellgelbes Pulver. – IR (KBr bzw. Polyethylen): $\nu = 1850s$, 1833s (C=O), $1626s (C=N), 337m (Pt-Cl) cm^{-1}. - {}^{1}H-NMR (270 MHz,$ $CDCl_3$): $\delta = 7.72 (d, C_6H_4), 7.34 (dd, {}^3J = 5.2 Hz, C_6H_4),$ $6.86 (d, {}^{3}J = 8,7 Hz, C_{6}H_{4}), 6.64 (dd, {}^{3}J = 6.9 Hz, C_{6}H_{4}),$ 4.79 (s, NCH₂), 1.90 (dq, PEt₃), 1.27 (m, PEt₃). - ¹³C-NMR (100,5 MHz, CDCl₃): $\delta = 170.3$ (d, ${}^{3}J_{P-C} = 4.6$ Hz, O-C=N), 167.2 (C=O), 160.2 (d, ${}^{3}J_{P-C} = 4.5$ Hz, C₆H₄), 134.8, 128.9, 122.4, 116.3, 108.0 (C₆H₄), 51.8 (NCH₂), 13.05, 7.5 (je d, PEt₃).

C₁₅H₂₁ClNO₃PPt (524.8)

Ber. C 34.33 H 4.03 N 2.67 %,

Gef. C 33.83 H 4.00 N 2.63 %.

5: Eduktkomplex: [PdCl₂(PnBu₃)]₂. Gelboranges Pulver. – IR (KBr bzw. Polyethylen): $\nu = 1846s$ (C=O), 1625s(C=N), 374m (Pd-Cl) cm⁻¹. – ¹H-NMR (270 MHz, CDCl₃): $\delta = 7.64$ (dd, ${}^{3}J = 8.2$ Hz, C₆H₄), 7.29 (dd, ${}^{3}J$ = 6.7 Hz, C_6H_4), 6.81 (dd, ${}^{3}J$ = 8.7 Hz, C_6H_4), 6.62 (dt, ${}^{3}J = 7.0$ Hz, C₆H₄), 4.63 (s, NCH₂), 1.84 (m, PnBu₃), 1.69 (m, PnBu₃), 1.50 (m, PnBu₃), 0.96 (t, ${}^{3}J = 7.2$ Hz, PnBu₃). $-{}^{13}$ C-NMR (100.5 MHz, CDCl₃): $\delta = 171.2$ (d, ${}^{3}J_{P-C} = 4.6 \text{ Hz}, \text{ O-C=N}, 168.5 \text{ (C=O)}, 163.2 \text{ (d, } {}^{3}J_{P-C} =$ 4.5 Hz, C₆H₄), 135.1, 129.4, 122.3, 115.2, 107.9 (C₆H₄), 52.6 (NCH₂), 25.8s, 24.3d, 21.5d, 13.6s (PnBu₃).

C21H33CINO3PPd (519.9)

Ber. C 48.47 H 6.34 N 2.69 %,

Gef. C 48.65 H 6.35 N 2.96 %.

6: Eduktkomplex: [PdCl₂(PEt₃)]₂. Gelbes Pulver. – IR (KBr bzw. Polyethylen): $\nu = 1845$ s, 1827s (C=O), $1630s (C=N), 373m (Pd-Cl) cm^{-1} - {}^{1}H-NMR (270 MHz,$ CDCl₃): $\delta = 7.57$ (d, ³J = 8.2 Hz, C₆H₄), 7.24 (dd, ³J =7.0 Hz, C₆H₄), 6.77 (d, ${}^{3}J = 8.6$ Hz, C₆H₄), 6.55 (t, ${}^{3}J$ = 7.5 Hz, C_6H_4), 4.55 (s, NCH₂), 1.84 (dq, PEt₃), 1.24 (dt, PEt_3) . – ¹³C-NMR (100.5 MHz, CDCl₃): = 170.3 (d, ${}^{3}J_{P-C} = 4.6$ Hz, O-C=N), 168.8 (C=O), 163.5 (d, ${}^{3}J_{P-C}$ $= 3 \text{ Hz}, C_6 \text{H}_4), 135.4, 129.7, 122.7, 115.6, 108.2 (C_6 \text{H}_4),$ 52.8 (NCH₂), 14.2 (d, PEt₃), 8.0 (s, PEt₃).

 $C_{15}H_{21}CINO_{3}PPd$ (436.2)

Ber. C 42.97 H 5.33 N 3.08 %,

Gef. C 42.88 H 5.25 N 3.42 %.

7: Eduktkomplex: [(p-Cymol)RuCl₂]₂. Rotorangefarbiges Pulver. – IR (KBr bzw. Polyethylen): $\nu = 1844s$, 1826s (C=O), 1635s (C=N), 273m (Ru-Cl) cm⁻¹. – ¹H-NMR (270 MHz, CDCl₃): δ = 7.36 (dd, ${}^{3}J_{P-C}$ = 8.2 Hz, C_6H_4), 7.35 - 7.18 (m, C_6H_4), 6.94 (d, ${}^{3}J$ = 8.2 Hz, C_6H_4), 6.44 (dt, ${}^{3}J = 8.0$ Hz, C₆H₄), 5.48 - 5.22 (m, *p*-Cymol), 4.73 (d, ${}^{2}J = 15.6$ Hz, NCHH'), 4.77 (d, ${}^{2}J = 15.6$ Hz, NCHH'), 2.86 (sept., ${}^{3}J = 7.0$, CH(CH₃)₂), 2.20 (s, CH₃), $1.26 (d, {}^{3}J = 6.9 Hz, (CH_{3})_{2}).$

C₁₉H₂₀ClNO₃Ru (446.6) Ber. C 51.05 H 4.47 N 3.13 %, Gef. C 50.75 H 4.62 N 3.46 %.

Allgemeine Synthesevorschrift für die Komplexe 8 - 12

1.0 mmol MCl_2 (M = Ni, Cu) werden in *ca*. 5 ml Methanol gelöst. Dazu gibt man eine Lösung von 1.0 mmol der Oxazolinone B (176 mg) bzw. C (218 mg) in 10 ml THF. Man rührt einige min bei R. T., wobei ein flockiger Niederschlag ausfällt. Dieser wird abzentrifugiert, zweimal mit ca. 10 ml THF gewaschen und bei 60 °C 5 h in Vak. getrocknet. Die Verbindungen sind in den gängigen Lösungsmitteln schwerlöslich.

8: NiCl₂, Lösung in THF, Oxazolinon C. Hellgrünes Pulver. – IR (KBr bzw. Polyethylen): $\nu = 1839$ s, 1814s (C=O), 1638s, 1610m (C=N), 256s, 231m (Ni-Cl) cm⁻¹.

 $C_{12}H_{14}Cl_2N_2NiO_2 \times 2H_2O$ (383.9)

Ber. C 37.51 H 4.69 N 7.29 %,

Gef. C 37.36 H 4.10 N 6.86 %.

9: Oxazolinon C. Hellgrünes Pulver. - IR (KBr bzw. Polyethylen): $\nu = 1858s$, 1844m (C=O), 1630s, 1609m (C=N), 290s, 275m (Cu-Cl) cm⁻¹.

 $C_{12}H_{14}Cl_2CuN_2O_2$ (352.7)

Ber. C 40.85 H 3.97 N 7.84 %,

Gef. C 41.10 H 4.32 N 7.54 %.

10: Oxazolinon B. Grünes Pulver. – IR (KBr): ν = 1853s, 1832m (C=O), 1632s, 1611m (C=N) cm⁻¹.

 $C_9H_8Cl_2CuN_2O_2$ (310.6)

Ber. C 34.78 H 2.57 N 9.01 %,

Gef. C 34.90 H 3.14 N 9.04 %.

11: Oxazolinon **B**, Herstellung wie für **12**. Gelbes Pulver. – IR (KBr bzw. Nujol): $\nu = 1855$ s, 1825m (C=O), 1632s, 1611m (C=N), 344s, 331m (Pd-Cl) cm⁻¹.

 $C_9H_8Cl_2N_2O_2Pd$ (353.5)

Ber. C 30.56 H 2.21 N 7.92 %,

Gef. C 30.50 H 2.61 N 7.86 %.

12: Zu 1.0 mmol (294 mg) Na₂PdCl₄ in *ca*. 5 ml Methanol gibt man 1,0 mmol des Oxazolinons C (218 mg) in 10 ml THF. Nach 1 h Rühren bei R. T. engt man im Vak. zur Trockene ein und nimmt den Rückstand in 20 ml Methylenchlorid auf. Die entstandene Suspension wird filtriert und das Lösungsmittel im Vak. entfernt. Man wäscht zweimal mit Ether und trocknet bei 60°C 5 h im Vak. Das Produkt fällt als hellrotes Pulver an. – IR (KBr bzw. Polyethylen): $\nu = 1862s$, 1837m (C=O), 1637s, 1610m (C=N), 335s, 322m (Pd-Cl) cm⁻¹. – ¹H-NMR (270 MHz, CDCl₃): $\delta = 7.97-7.58$ m (C₆H₄), 4.91 (s, NHCO), 3.10 (sep., CH(CH₃)₂), 2.88 (s, NH₂), 1.10 (dd, CH(CH₃)₂). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 171.6$ (C=O), 162.7 (O-C=N), 137.0, 132.3, 128.7, 125.5, 120.4 (C₆H₄), 69.1 (NCH), 32.0 (CH(CH₃)₂), 18.5, 15.9 (CH(CH₃)₂).

 $C_{12}H_{14}Cl_2N_2O_2Pd$ (395.5)

Ber. C 36.41 H 3.54 N 7.08 %,

Gef. C 36.75 H 3.90 N 7.18 %.

Allgemeine Synthesevorschrift für die Komplexe 13 - 18

Zunächst werden je 0,50 mmol der Komplexe 1 bzw. 2, 1.00 mmol Aminosäureesterhydrochlorid sowie eine Spatelspitze DMAP in ein Schlenkrohr gegeben und mit *ca.* 20 ml Methylenchlorid versetzt. Anschließend wird noch 1.00 mmol Triethylamin (139,1 μ l) zupipettiert und die so erhaltene grüne Suspension 15 h bei R. T. gerührt. Die erhaltene Lösung wird durch Abzentrifugieren von Eduktresten befreit, im Vak. eingeengt und der Rückstand anschließend zweimal mit Wasser gewaschen. Nach dem letzten Abzentrifugieren wird der Niederschlag bei 60 °C 5 h im Vak. getrocknet.

13: Komplex **1** und Glycinmethylester-hydrochlorid. Rotbraunes Pulver. – IR (KBr): $\nu = 1728s$ (CO₂Me), 1655s, 1649s (C=O), 1597s (koord. C=O) cm⁻¹. - ¹H-NMR (270 NHz, CDCl₃): $\delta = 7.84$ (d, ³*J* = 13.2 Hz, C₆H₄), 7.42 (d, ³*J* = 7.6 Hz, C₆H₄), 6.94-6.91 (C₆H₄), 4.14 (s, NCH₂CO₂), 4.00 (s, NHCH₂), 3.74 (s, CO₂CH₃). C₂₄H₂₆N₄NiO₁₀ (590.2)

Ber. C 48.84 H 4.44 N 9.49 %,

Gef. C 49.59 H 4.99 N 9.48 %.

14: Komplex 1 und L-Alaninmethylester-hydrochlorid. Rotes Pulver. – IR (KBr): $\nu = 1736s$ (CO₂Me), 1648s (C=O), 1610s (koord. C=O) cm⁻¹. – ¹H-NMR (270 MHz, CDCl₃): $\delta = 12.00$ (NHCH₂), 7.82 (d, ³J = 7.6 Hz, C₆H₄), 7.39 (t, ³J = 7.4 Hz, C₆H₄), 6.91 (m, C₆H₄), 4.48 (q, ³J = 7.3 Hz, CHCH₃), 4.11 (d, ³J = 7.5 Hz, NHCH₂), 3.73 (s, CO₂CH₃), 1.41 (d, ³J = 7.3 Hz, CHCH₃). - ¹³C-NMR $(100.5 \text{ MHz}, \text{CDCl}_3): \delta = 174.9 (CO_2CH_3), 135.1, 129.6, 125.1, 120.3 (C_6H_4), 52.9 (CO_2CH_3), 43.5 (NHCHR), 17.5 (CH(CH_3)).$

C₂₆H₃₀N₄NiO₁₀ (639.7)

Ber. C 50.59 H 4.90 N 9.08 %,

Gef. C 50.81 H 5.28 N 8.78 %.

15: Komplex 1 und L-Phenylalaninmethylester-hydrochlorid. Rotbraunes Pulver. – IR (KBr): ν = 1743m (CO₂Me), 1679m, 1640m (C=O), 1615s (koord. C=O) cm⁻¹. – ¹H-NMR (270 MHz, CDCl₃): $\delta = 7.78$ (d, ³*J* = 6.5 Hz, C₆H₄), 7.39 (s, C₆H₄), 7.29 - 7.18 (m, Ph), 6.91 (d, ³*J* = 7.1 Hz, C₆H₄), 4.72 (t, ³*J* = 5.8 Hz, NHCH(CH₂Ph), 4.04 (s, NHCH₂), 3.69 (s, CO₂CH₃), 3.12 (d, ³*J* = 4.8 Hz, CH₂Ph). – ¹³C-NMR (100.5 Hz, CDCl₃): $\delta = 173.6$ (CO₂CH₃) 163.0 (CONH), 135.3, 130.5, 129.7, 128.3, 120.4, 118.7 (C₆H₄), 138.1, 130.6, 129.8, 128.2 (Ph), 55.3 (NHCH₂CO), 52.9 (CO₂CH₃), 43.6 (NHCHRCO), 38.5 (CH₂Ph).

C38H38N4NiO10 (769.4)

Ber. C 59.24 H 4.94 N 7.27 %,

Gef. C 59.37 H 5.58 N 7.86 %.

16: Komplex 2 und Glycinmethylester-hydrochlorid. Grünes Pulver. – IR (KBr): $\nu = 1728s$ (CO₂ Me), 1654s, 1646s (C=O), 1599 (koord. C=O).

C₂₄H₂₆CuN₄O₁₀ (594.0)

Ber. C 48.53 H 4.41 N 9.43 %,

Gef. C 48.22 H 4.57 N 9.51 %.

17: Komplex 2 und Leucinmethylester-hydrochlorid. Gelbbraunes Pulver. – IR (KBr): $\nu = 1744$ m (CO₂Me), 1644s (C=O), 1602s (koord. C=O) cm⁻¹.

 $C_{32}H_{42}CuN_4O_{10}$ (705.5)

Ber. C 54.43 H 5.95 N 7.93 %,

Gef. C 53.60 H 5.53 N 7.93 %.

18: Komplex **2** und L-Methioninmethylester-hydrochlorid. Rotes Pulver. – IR (KBr): 1741s (CO₂Me), 1643s (C=O), 1599s (koord. C=O) cm⁻¹.

 $C_{30}H_{38}CuN_4O_{10}S_2$ (741.5)

Ber. C 48.55 H 5.12 N 7.55 %,

Gef. C 47.22 H 5.04 N 7.42 %.

Allgemeine Synthesevorschrift für die Komplexe 19 - 23

Es werden nacheinander je 0,31 mmol der Oxazolinone **D**, **E**, **F** bzw. **G** und 0.31 mmol $[Et_3PMCl_2]_2$ (M = Pt, Pd) in ein Schlenkrohr eingewogen, mit etwa 20 ml Dichlormethan versetzt und 15 h bei R. T. gerührt. Das Lösungsmittel wird im Vak. bis auf *ca*. 1 ml entfernt und die eingeengte Lösung mit *ca*. 25 ml Diethylether versetzt. Das ausgefallene Produkt wird abgetrennt und die überstehende Lösung bei -30° C zur Kristallisation gebracht. Die gebildeten Kristalle werden nach Abdekantieren der Mutterlauge bei 60° C 5 h im Vak. getrocknet.

19: Mit Oxazolinon **D**. Ockerfarbene Kristalle. – IR (KBr bzw. Polyethylen): $\nu = 1862s$, 1850s (C=O),

Tab.	III.	Röntgenog	raphische	Daten	von	6 und	20	[13].	
------	------	-----------	-----------	-------	-----	-------	----	-------	--

	6	20			
Kristallparameter:					
Summenformel Molmasse [g/mol] Kristallgröße [mm] Kristallsystem Raumgruppe a [pm] b [pm] c [pm] β [°] V [nm ³] Z d(ber.) [g/cm ³] 	$\begin{array}{c} C_{15}H_{21}\text{CINO}_3\text{PPd} \\ 436.15 \\ 0.27 \times 0.40 \times 0.47 \\ \text{monoklin} \\ \text{P21/n} \\ 907.9(3) \\ 1228.3(3) \\ 1626.3(3) \\ 102.45(2) \\ 1.7709(10) \\ 4 \\ 1.636 \\ 5.6205 \end{array}$	$\begin{array}{c} C_{26}H_{42}Cl_4N_2O_4P_2P_1\\ 1040.54\\ 0.13\times0.27\times0.47\\ monoklin\\ P21/c\\ 1191.84(6)\\ 1066.81(6)\\ 1414.15(14)\\ 99.158(6)\\ 1.7751(2)\\ 2\\ 1.947\\ 5.6205 \end{array}$			
$\mu(MoK_{\alpha}) [mm^{-1}]$	5.6295	5.6295			
Meßparameter: Diffraktometer Meßtemperatur [K] Monochromator Meßmethode Meßbereich 2 θ [°] Gemessene Indices Gemessene Reflexe Sy. unabh. Reflexe Beobacht. Reflexe Abskorrektur min./max.	Enraf No 296(2) Graphit ω 4 - 46 +h +k $\pm l$ 2632 2454 2229 semi-e 0.8984/0.9999 Verfeinerung:	nius CAD4 — 293(2) Graphit ω 5 - 46 $\pm h + k + l$ 2588 2470 2268 mpirisch — 0.5072/0.9997			
Dragroupp SHELVL 02					
Verf. Parameter H-Atome R wR2 Extrema der letzten Differenz-Fourier- Synth. [e·10 ⁻⁶ pm]	202 — geom. p 0.0288 0.0648 0.461 / -0.344	185 00sitioniert — 0.0288 0.0731 0.946 / -0.737			

1640s (C=N), 351s (Pt-Cl) cm⁻¹. $^{-1}$ H-NMR (400 MHz, CDCl₃): δ = 9.96 (s, C₆H₄), 9.6 (d, ^{3}J = 7.9 Hz, C₆H₄), 7.8 (t, ^{3}J = 7.9 Hz, C₆H₄), 4.89 (s, NCH₂), 1.87 (m, PEt₃), 1.26 (m, PEt₃). $^{-13}$ C-NMR (100.5 MHz, CDCl₃): δ = 169.3 (C=O), 165 (C=N), 135.8, 131.8, 129.1, 124.3 (C₆H₄), 54.6 (NCH₂), 14.2 (d, PEt₃), 7.7 (PEt₃). $^{-31}$ P-NMR (109 MHz, CDCl₃): δ = 2.88 (s, $^{1}J_{PtP}$ = 3466 Hz).

C24H38Cl4N2O4P2Pt2 x CH2Cl2 (1097.4)

Ber. C 27.37 H 3.67 N 2.55 %,

Gef. C 27.48 H 3.88 N 2.45 %.

20: Mit Oxazolinon E. Gelbe Kristalle. – IR (KBr bzw. Polyethylen): $\nu = 1862s$, 1840s, 1826s (C=O), 1637s (C=N), 346s (Pt-Cl) cm⁻¹. – ¹H-NMR (400 MHz,

CDCl₃): δ = 9.18 (s, CH_{aromat.}), 4.97 (s, NCH(CH₃)), 2.01 (s, CH₃), 1.97 (m, PEt₃), 1.24 (m, PEt₃). – ¹³C-NMR (100.5 MHz, CDCl₃): δ = 173.2 (C=O), 164.4 (C=N), 130.5, 128.7 (C₆H₄), 77.2 (NCHCH₃), 17.41 (CH₃), 14.2 (PEt₃), 7.78 (PEt₃). – ³¹P-NMR (109 MHz, CDCl₃): δ = 3.34 (s, ¹J_{P1-P} = 3800 Hz).

 $C_{26}H_{42}Cl_4N_2O_4P_2Pt_2$ (1040.5)

Ber. C 29.99 H 4.03 N 2.69 %,

Gef. C 29.71 H 4.13 N 2.43 %.

21: Mit Oxazolinon F. Gelbe Kristalle. – IR (KBr bzw. Polyethylen): $\nu = 1855$ s, 1828s (C=O), 1631s (C=N), 341s (Pt-Cl) cm⁻¹. – ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.24$ (s, CH_{aromat.}), 2.01 (s, CH₃), 1.94 (m, PEt₃), 1.26 (PEt₃). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 175.9$ (C=O), 163.3 (C=N), 130.3, 128.8 (C₆H₄), 77.1 (NC(CH₃)₂), 17.4 (CH₃), 14.1 (d, PEt₃), 7.54 (PEt₃). – ³¹P-NMR (109 MHz, CDCl₃): $\delta = 2.15$ (s, ¹ $J_{PtP} = 3800$ Hz).

 $C_{28}H_{46}Cl_4N_2O_4P_2Pt_2$ (1068.6)

Ber. C 31.44 H 4.30 N 2.62 %,

Gef. C 30.16 H 4.29 N 2.27 %.

22: Mit Oxazolinon G. Gelbe Kristalle. – IR (KBr bzw. Polyethylen): $\nu = 1847$ s, 1826s (C=O), 1674s (C=N), 345s (Pt-Cl) cm⁻¹. – ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.77$ (s, CH₂), 1.92 (m, PEt₃), 1.74 (s, CH₃), 1.24 (m, PEt₃). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 175.8$ (C=O), 167.2 (C=N), 77.1 (NC(CH₃)₂), 67.3 (CH₂), 25.5 (CH₃), 1.3.7 (PEt₃), 7.68 (PEt₃). – ³¹P-NMR (109 MHz, CDCl₃): $\delta = 2.02$ (s, ¹*J*_{PtP} = 3200 Hz).

C₂₄H₄₆Cl₄N₂O₄P₂Pt₂ (1020.6)

Ber. C 28.44 H 4.50 N 2.74 %,

Gef. C 28.27 H 4.49 N 2.71 %.

23: Mit Oxazolinon **G**. Gelbe Kristalle. – IR (KBr bzw. Polyethylen): $\nu = 1847$ s, 1826s (C=O), 1674s (C=N), 353s (Pd-Cl) cm⁻¹. – ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.65$ (s, CH₂), 1.77 (s, CH₃), 1.93 (m, PEt₃), 1.24 (m, PEt₃). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 166.0$ (C=N), 76.9 (NC(CH₃)₂), 66.6 (CH₂), 25.9 (CH₃), 15.9 (PEt₃), 8.0 (PEt₃). – ³¹P-NMR (109 MHz, CDCl₃): $\delta = 37.5$ (s).

C₂₄H₄₆Cl₄N₂O₄P₂Pd₂ (843.2) Ber. C 34.20 H 5.46 N 3.32 %, Gef. C 34.36 H 5.29 N 3.45 %.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für großzügige Förderung. Herrn Professor Wolfgang Steglich, München, danken wir für wertvolle Diskussionen.

- [1] 105. Mitteilung: W. Hoffmüller, M. Maurus, K. Severin, W. Beck, Eur. J. Inorg. Chem. im Druck.
- [2] W. Steglich, Fortschr. Chem. Forsch. 12, 72 (1969);
 Y. S. Rao, R. Filler, in I. J. Turchi (ed.): The Chemistry of Heterocyclic Compounds 45 (Oxazoles),
 S. 361, Wiley Interscience, New York (1986); A. K. Mukerjee, Heterocycles 26, 1077 (1987); G. Krüger, in Houben-Weyl, Methoden der organischen Chemie E16d, S. 40, Thieme Verlag, Stuttgart (1992);
 I. Shinkai, in Comprehensive Heterocyclic Chemistry II 3, S. 282, Elsevier Science Ltd, Amsterdam (1996).
- [3] B. Schreiner, M. Prem, W. Bauer, K. Polborn, W. Beck, Z. Naturforsch. **52b**, 1199 (1997).
- [4] W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, W. Beck, Eur. J. Inorg. Chem. 1998, 485.
- [5] C. Bolm, K. Weickhardt, M. Zehnder, D. Glasmacher, Helv. Chim. Acta 74, 717 (1991).
- [6] M. Gómez-Simón, S. Jansat, G. Müller, D. Panyella, M. Font-Bardía, S. Solans, J. Chem. Soc., Dalton Trans. 1997, 3755.
- [7] Vgl. z.B. S. Jaroch, T. Schwarz, W. Steglich, P. Zistler, Angew. Chem. **105**, 1803 (1993); Angew. Chem., Int. Ed. Engl. **32**, 1771 (1993).
- [8] D. A. Buckingham, L. G. Marzilli, A. M. Sargeson, J. Am. Chem. Soc. 89, 2772, 4539 (1967).
- [9] H. van der Poel, G. van Koten, K. Vrieze, Inorg. Chem. 19, 1145 (1980); J. F. Baar, K. Vrieze, D. J.

Stufkens, J. Organomet. Chem. 97, 461 (1975);
A. D. Buckingham, J. P. Stephens, J. Chem. Soc. 1964, 4583; R. G. Miller, R. D. Stauffer, P. R. Fahey,
P. R. Parnell, J. Am. Chem. Soc. 92, 1511 (1970);
C. G. Anklin, P. S. Pregosin, Magn. Res. Chem. 23, 671 (1985); M. Brookhart, M. L. H. Green, J. Organomet. Chem. 250, 395 (1983); A. Albinati, P. S. Pregosin, F. Wombacher, Inorg. Chem. 29, 1812 (1990); F. Neve, M. Ghedini, A. Crispini, Organometallics 11, 3324 (1992); R. H. Crabtree, Angew. Chem. 105, 828 (1993); Angew. Chem., Int. Ed. Engl. 32, 789 (1993); W. Yao, O. Eisenstein, R. Crabtree, Inorg. Chim. Acta 254, 105 (1997) und dort zitierte Literatur.

- [10] F. R. Hartley, Organomet. Chem. Rev. A 6, 119 (1970).
- [11] M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, Inorg. Synth. 21, 74 (1982).
- [12] A C: Cyclisierung der entsprechenden N-geschützten Aminosäuren mit DCC nach R. Lohmar, W. Steglich, Chem. Ber. 113, 3706 (1980); D - G: nach C. S. Cleaver, B. C. Pratt, J. Am. Chem. Soc. 77, 1541 (1955) und Cyclisierung mit Ac₂O.
- [13] Weitere Einzelheiten zu den Kristallstrukturanalysen können beim Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK unter Angabe der Hinterlegungsnummer 101301 angefordert werden.