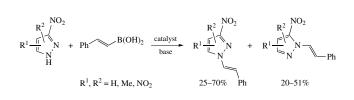


ScienceDirect

Mendeleev Commun., 2020, 30, 185-187

Mendeleev Communications

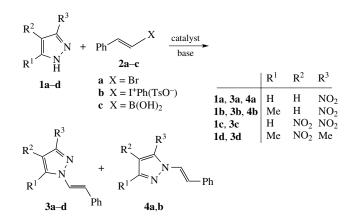

Regioselectivity of the Chan–Lam coupling of ambident nitropyrazoles with *trans*-styrylboronic acid

Dmitry V. Davydov, Petr K. Sazonov* and Yurii F. Oprunenko

Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation. Fax: +7 495 939 1854; e-mail: pksspk00@gmail.com

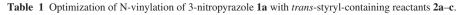
DOI: 10.1016/j.mencom.2020.03.018

Regioselectivity of the Chan–Lam coupling of ambident nitropyrazoles with *trans*-styrylboronic acid depends on the base and catalyst nature and can vary the N(1)/N(2)-isomer ratio from ~2:1 to ~1:2. 2-Methyl-4-nitro- and 2,4-dinitro-imidazoles are unreactive in this reaction. The structure of N(1)/N(2) isomers was elucidated by NOE measurements and by the comparison of experimental and DFT calculated ¹³C NMR chemical shifts.


Keywords: pyrazoles, nitropyrazoles, vinylpyrazoles, vinylboronic acids, Chan-Lam reaction, copper catalysis, ¹³C NMR, DFT.

N-Modified nitroazoles are valuable compounds due to their high biological and pharmacological activity and synthetic applications.¹ In particular, some nitro-*N*-vinylazoles possess good antimicrobial and antyinflammatory activity² and are applied for synthesis of other classes of heterocyclic compounds such as nucleosides and nucleotides³ and N-fused heterocycles.⁴

Classical methods for the synthesis of nitro-*N*-vinylazoles are typically based on multistage chemical processes.^{3(b),4(a)} From the practical point of view, only the direct regioselective N-modification of ambident anions of nitroazoles with available agents can be optimal.⁵ At the same time, we could not find any modern procedure for the N-vinylation of nitroazoles employing transition metal catalysis.


In principle, catalytic N-vinylation of non-symmetrical nitropyrazoles with various vinyl-containing reagents can give two isomers (Scheme 1).

Initially, we tried to perform direct coupling of available 3-nitropyrazole **1a** with *trans*-styryl bromide **2a** in the presence of CuI under conditions described by Taillefer.⁶ Very low total

Scheme 1 For details and yields, see Tables 1 and 2.

yield of products **3a**, **4a** was observed both in MeCN and DMF (Table 1, entry 1).

Entry	Vinylation reactant	Catalyst ^a	Solvent	T/°C	<i>t/</i> h	Base, additive	Atmo- sphere	Yield of 3a (%) ^b	Yield of 4a (%) ^b	N(1)/N(2) (3a : 4a) ratio ^c
1	2a	CuI	MeCN, DMF	80	6	Cs ₂ CO ₃	Ar	very low	very low	_
2	2b	Pd^d	MeCN	20	6	Al ₂ O ₃ basic	Ar	traces	traces	-
3	2b	CuI	CH_2Cl_2	20	6	[Cu ₂ (TMEDA) ₂ (OH) ₂]Cl ₂	Ar	traces	traces	-
4	2b	CuI	MeCN	80 (MW)	0.25	DBU	Ar	traces	traces	-
5	2c	CuCl	MeOH	65	6	NaOH	air	traces ^a	traces	-
6	2c	CuCl	CH_2Cl_2	20	6	Py or Et ₃ N	air	very low ^e	very low	
7	2c	CuSO ₄	CH_2Cl_2	20	24	Ру	O ₂	42	20	~2.1
8	2c	Cu(OAc) ₂	CH_2Cl_2	20	24	Ру	O ₂	40 ^f	20	~2.0
9	2c	Cu(OTf)2·PhH	CH_2Cl_2	20	24	Ру	O ₂	45	22	~2.1
10	2c	[Cu ₂ (TMEDA) ₂ (OH) ₂]Cl ₂	CH_2Cl_2	20	24	Py, MS 4 Å	O ₂	31	30	~0.9
11	2c	$[Cu_2(TMEDA)_2(OH)_2]Cl_2$	CH ₂ Cl ₂	20	24	K ₂ CO ₃	O ₂	25	51	~0.5

^{*a*} 10 mol% of [Cu] catalyst. ^{*b*} Isolated yield after TLC. ^{*c*} Calculated from ¹H NMR data of the reaction mixtures purified by flash chromatography. ^{*d*} Pd/Al₂O₃ basic. ^{*e*} Up to 20% of 1,4-diphenylbutadiene formed. ^{*f*} *trans*-Styryl acetate (~3%) was found in the reaction mixture.

Italian Oral Surgery, 30 (2020) 185-187. doi:10.1016/j.mencom.2020.03.018

Italian Oral Surgery, 30 (2020) 185-187. doi:10.1016/j.mencom.2020.03.018