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Abstract. The synthesis of substituted cage [4.4.2]propellanes and D3-trishomocubanes bearing spiro linkage
have been assembled with the aid of Diels–Alder reaction and ring-rearrangement as key steps. Here,
readily available 1,4-hydroquinone, isoprene, spiro[2.4]hepta-4,6-diene and spiro[4.4]nona-1,3-diene were used
as starting materials. The unusual rearrangement of cage propellanes with zinc/acetic acid produced D3-
trishomocubanes in good yields.

Keywords. Cage compounds; MnO2 oxidation; Diels–Alder reaction; [2+2] photocycloaddition;
acid-promoted rearrangement; D3-Trishomocubanes.

1. Introduction

Polycyclic cage compounds1 proved to be useful
intermediates to synthesize high energy or high-density
materials.2 They are also valuable synthons to natural
and non-natural products3 and they serve as scaffolds in
medicinal and pharmaceutical chemistry.4 Since these
molecules have several applications in material sci-
ence and medicinal chemistry, they captured synthetic
chemists’ attention. Their chemical and physical prop-
erties are worthy of further investigation5 because of
their structural features, rigid architecture, inherent ring
strain and deformation from ideal C–C bond angles.6

Rigid cage propellane frameworks offer a unique
opportunity to design unusual polycycles via ring-
rearrangement, ring fragmentation and ring-opening
approaches.7 Rearrangements in polycyclic frame is
very common due to the release of strain.8 Our main goal
in this area is to expand the chemical space of cage poly-
cyclic systems9 and in this regard, recently, we reported
a new synthetic route to D3-trishomocubane derivatives
via Lewis acid-catalyzed rearrangement starting with
cage [4.3.2] and [4.4.2]propellane systems.10 Some of
the intricate polycyclic cage molecules 1–5, recently
reported are depicted in Figure 1.11
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2. Experimental

2.1 Materials, analytical measurements and general
synthetic procedures

All the reagents, chemicals and solvents were purchased from
the commercial vendors and used as such without any fur-
ther purification. Analytical TLC was performed on (10 × 5)
glass plates coated with Acme’s silica gel (GF-254) contain-
ing 13% calcium sulfate as a binder. All the reactions were
monitored by TLC using the suitable solvent system and visu-
alization was done under UV light, exposure to iodine vapour
and by dipping into a solution of KMnO4. Dry reactions
were performed in oven-dried glassware under N2 atmosphere
using standard syringe-septum techniques. Acme’s silica gel
(100–200 mesh size) was used for column chromatography.
Benzene and toluene were distilled from P2O5 (or CaH2) and
ethyl acetate was dried over K2CO3.

IR spectra were recorded on a Nicolet Impact-400 FTIR
spectrometer and samples were prepared as a thin film
between CsCl plates by dissolving the compound in DCM and
chloroform solvent. 1H NMR (400 and 500 MHz), 13C NMR,
13C-APT NMR, DEPT 135 NMR (100 and 125 MHz) spec-
tra were recorded on Bruker spectrometer and samples were
prepared in a CDCl3 solvent. The chemical shifts are reported
in parts per million (ppm) on delta scale with TMS as internal
standard and values for the coupling constants (J ) are given in
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Figure 1. Representatative examples of various polycyclic cage systems useful in diverse areas.

Hz. The standard abbreviations for 1H NMR spin couplings
are given as s, d, t, q, dd, dt, td, and m for singlet, doublet,
triplet, quartet, a doublet of doublet, doublet of triplet, triplet
of doublet and multiplet respectively. High-resolution mass
spectra (HRMS) were recorded in a positive ion electrospray
ionization (ESI-Q-TOF). All melting points were recorded
on Veego VMP-CMP melting point apparatus and are uncor-
rected.

General procedure for synthesis of Diels–Alder adducts
18 and 20
To a stirred solution of 6-methyl-5,8-dihydronaphthalene-1,4-
dione 14 (2.87–3.44 mmol, 1 equiv) and freshly prepared
spiro[2.4]hepta-4,6-diene 16 (0.6 mL, 6.20 mmol for 18)
in dry benzene(10 mL) and spiro[4.4]nona-1,3-diene 17
(0.7 mL, 5.30 mmol for 20) in dry toluene (10 mL) was
kept refluxing overnight (progress monitored by TLC). After
completion of the reaction (TLC monitoring), the solvent was
evaporated under reduced pressure and the residue purified by
silica gel column chromatography (2–4% EtOAc/petroleum
ether) to give pure 18 and 20 as light yellow crystalline solids.

DA adduct 18: light yellow crystalline solid; M.p. 98–
100 ◦C; prepared from compound 14 (600 mg, 3.44 mmol);
Yield: 780 mg (85%); IR (neat, cm−1): 2993, 2935, 2867,
1651, 1451, 1420, 1300, 1271, 1125, 1078, 1007, 961;
1H NMR (500 MHz, CDCl3): δ 6.07 (d, J = 1.6 Hz, 2H),
5.40–5.39 (m, 1H), 3.37 (t, J = 1.7 Hz, 2H), 2.96–2.83
(m, 6H), 1.69 (s, 3H), 0.58–0.55 (m, 2H), 0.48–0.45 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 198.4, 198.3, 146.1,
145.9, 135.38, 135.37, 130.0, 116.8, 53.97, 53.95, 49.19,
49.11, 44.85, 29.40, 25.8, 22.8, 8.0, 6.9 ppm; HRMS (ESI, Q-
ToF): m/z calcd for C18H18KO2 [M + K]+ 305.0938; found:
305.0935.

DA adduct 20: light yellow crystalline solid; M.p. 113–
115 ◦C; prepared from compound 14 (500 mg, 2.87 mmol);
Yield: 580 mg (69%); IR (neat, cm−1): 2979, 1661, 1418,
1271, 1071, 922; 1H NMR (500 MHz, CDCl3): δ 5.97 (t,
J = 1.7 Hz, 2H), 5.40–5.38 (m, 1H), 3.43–3.40 (m, 1H), 3.28
(t, J = 1.6 Hz, 2H), 2.95–2.92 (m, 2H), 2.85–2.81 (m, 2H),
2.03–1.98 (m, 1H), 1.69 (s, 3H), 1.61–1.55 (m, 2H), 1.51–
1.42 (m, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ 199.0,
198.8, 146.0, 145.8, 136.14, 136.13, 130.0, 116.8, 69.0, 56.5,
48.4, 32.6, 32.0, 31.6, 31.0, 29.3, 25.9, 25.8, 25.4, 22.8 ppm;
HRMS (ESI, Q-ToF): m/z calcd for C20H20KO2 [M + K]+
331.1095; found: 331.1096.

General procedure for the synthesis of Diels–Alder
adducts 19 and 21
A stirred solution of 6,7-dimethyl-5,8-dihydronaphthalene-
1,4-dione 15 (1.60–3.18 mmol, 1 equiv) and freshly prepared
spiro[2.4]hepta-4,6-diene 16 (0.6 mL, 5.70 mmol for 19)
in dry benzene(10 mL) and spiro[4.4]nona-1,3-diene 17
(0.4 mL, 2.86 mmol for 21) in dry toluene (5 mL) was
kept refluxing overnight (progress monitored by TLC). After
completion of the reaction shown by TLC, the solvent was
evaporated under reduced pressure and the residue purified by
silica gel column chromatography (3–5% EtOAc/petroleum
ether) to give the pure DA adducts 19 and 21 as light yellow
crystalline solids.

DA adduct 19: light yellow crystalline solid; M.p. 144–
146 ◦C; prepared from compound 15 (600 mg, 3.18 mmol);
Yield: 655 mg (73%); IR (neat, cm−1): 3072, 2993, 2927,
1647, 1357, 1298, 1268, 1206, 1146, 990, 914, 805, 768;
1H NMR (500 MHz, CDCl3): δ 6.07 (t, J = 1.5 Hz, 2H),
3.37 (s, 2H), 2.94–2.85 (m, 6H), 1.66 (s, 6H), 0.59–0.56
(m, 2H), 0.49–0.45 (m, 2H) ppm; 13C NMR (125 MHz,
CDCl3): δ = 198.4, 146.2, 135.3, 121.8, 54.0, 49.1, 44.8,
31.4, 18.8, 8.0, 6.9 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C19H20NaO2 [M + Na]+ 303.1356; found: 303.1352.

DA adduct 21: light yellow crystalline solid; M.p. 169–
171 ◦C; prepared from compound 15 (300 mg, 1.60 mmol);
Yield: 315 mg (65%); IR (neat, cm−1): 2949, 2861, 1661,
1603, 1444, 1412, 1327, 1286, 753, 699; 1H NMR (500 MHz,
CDCl3): δ 5.97 (s, 2H), 3.44–3.41 (m, 2H), 3.28 (s, 2H), 3.10
(s, 2H), 2.03–2.01 (m, 2H), 1.66 (s, 6H), 1.59 (t, J = 6.9 Hz,
2H), 1.51–1.43 (m, 6H) ppm; 13C NMR (125 MHz, CDCl3):
δ 198.9, 146.2, 136.1, 121.8, 69.0, 56.6, 48.5, 32.6, 32.0,
31.6, 31.4, 31.1, 26.0, 25.4, 18.8 ppm; HRMS (ESI, Q-ToF):
m/z calcd for C21H24NaO2 [M + Na]+ 331.1669; found:
331.1665.

General procedure for [2+2] photocycloaddition of DA
adducts 18, 19, 20, and 21
The DA adducts 18, 19, 20, and 21(0.87–2.81 mmol) were
dissolved in dry EtOAc (250 mL) and irradiated in a pyrex
immersion well using 125 W UV lamp for 1–2 h under
nitrogen atmosphere at room temperature. After comple-
tion of the reaction (monitored by TLC), the solvent was
evaporated under vacuo and the crude residue was puri-
fied by silica gel column chromatography using 7–10%
EtOAc/petroleum ether as eluent to afford the photo adducts
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(cage propellanediones) 22, 23, 24, and 25 as pure white
crystalline solids.

Cagedione22: colourless crystalline solid; M.p. 105–107 ◦C;
prepared from DA adduct 18 (750 mg, 2.81 mmol); Yield:
720 mg (96%); IR (neat, cm−1): 2983, 1744, 1727, 1437,
1263, 1232, 1090; 1H NMR (500 MHz, CDCl3): δ 5.58 (t,
J = 1.5 Hz, 1H), 2.91 (s, 2H), 2.83–2.77 (m, 2H), 2.34–2.26
(m, 2H), 2.16 (t, J = 1.9 Hz, 2H), 1.76 (s, 4H), 1.63 (d,
J = 16.3 Hz, 1H), 0.67–0.65 (m, 2H), 0.61–0.58 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 213.2, 213.0, 133.9,
118.8, 55.3, 55.2, 52.9, 52.0, 49.1, 49.0, 43.05, 43.02, 37.7,
28.9, 24.4, 23.9, 5.5, 4.1 ppm; HRMS (ESI, Q-ToF): m/z calcd
for C18H19O2 [M + H]+ 267.1380; found: 267.1376.

Cagedione23: colourless crystalline solid; M.p. 197–199 ◦C;
prepared from DA adduct 19 (600 mg, 2.14 mmol); Yield:
582 mg (97%); IR (neat, cm−1): 3169, 2955, 1742, 1722,
1518, 1439, 1354, 1263, 1153; 1H NMR (400 MHz, CDCl3):
2.91 (d, J = 1.3 Hz, 2H), 2.79 (s, 2H), 2.35 (d, J = 15.8 Hz,
2H), 2.17 (d, J = 1.5 Hz, 2H), 1.74 (s, 6H), 1.65 (d, J =
15.5 Hz, 2H), 0.70–0.66 (m, 2H), 0.62–0.58 (m, 2H) ppm;
13C NMR (125 MHz, CDCl3): δ 213.2, 124.8, 55.4, 53.0,
49.2, 42.8, 37.7, 30.4, 20.2, 5.5, 4.1 ppm; HRMS (ESI, Q-
ToF): m/z calcd for C19H20NaO2 [M+Na]+ 303.1356; found:
303.1357.

Cagedione24: colourless crystalline solid; M.p. 121–123 ◦C;
prepared from DA adduct 20 (550 mg, 1.86 mmol); Yield:
527 mg (96%); IR (neat, cm−1): 2945, 1749, 1725, 1264,
1036; 1H NMR (500 MHz, CDCl3): δ 5.60–5.59 (m, 1H),
2.86 (s, 2H), 2.76–2.70 (m, 2H), 2.40–2.28 (m, 4H), 1.78
(s, 3H), 1.75 (d, J = 6.8, 1H), 1.68–1.63 (m, 5H), 1.57 (t,
J = 6.1, 2H), 1.52 (t, J = 6.8 Hz, 2H) ppm; 13C NMR
(125 MHz, CDCl3): δ 213.1, 212.9, 133.9, 118.8, 65.2, 54.7,
54.6, 52.2, 51.27, 51.20, 51.1, 43.0, 42.9, 32.2, 29.0, 28.5,
25.7, 25.5, 24.5, 24.0 ppm; HRMS (ESI, Q-ToF): m/z calcd
for C20H22NaO2 [M + Na]+ 317.1512; found: 317.1516.

Cagedione25: colourless crystalline solid; M.p. 214–216 ◦C;
prepared from DA adduct 21 (270 mg, 0.87 mmol); Yield:
252 mg (94%); IR (neat, cm−1): 3023, 2931, 1750, 1723,
1448, 1302, 1039, 791; 1H NMR (500 MHz, CDCl3): δ =
2.84 (d, J = 1.4, 2H), 2.69 (s, 2H), 2.40–2.33 (m, 4H), 1.75
(s, 6H), 1.68–1.63 (m, 6H), 1.57 (t, J = 6.7, 2H), 1.51 (t,
J = 6.7 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3): δ =
213.1, 124.8, 65.2, 54.7, 52.2, 51.2, 42.6, 32.2, 30.4, 28.5,
25.7, 25.6, 20.3 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C21H24NaO2 [M + Na]+ 331.1669; found: 331.1667.

General procedure for the synthesis of Diels–Alder
adducts 27 and 29
A solution of 6-methylnaphthalene-1,4-dione 26 (200 mg,
1.16 mmol, 1 equiv) and freshly prepared spiro[2.4]hepta-
4,6-diene 16 (0.2 mL, 2.09 mmol for 27) in dry benzene
(10 mL) and spiro[4.4]nona-1,3-diene 17 (0.3 mL, 2.0 mmol
for 29) in dry toluene (10 mL) was kept refluxing overnight
(progress monitored by TLC). After completion of the reac-
tion the solvent was evaporated under reduced pressure and

the residue purified by silica gel column chromatography (3%
EtOAc/petroleum ether) to give pure 27 and 29 as pale yellow
solids.

DA adduct 27: pale yellow solid; M.p. 110–120 ◦C; pre-
pared from compound 26 (200 mg, 1.16 mmol); Yield: 227 mg
(74%); IR (neat, cm−1): 3061, 2983, 1679, 1600, 1325, 1293,
1273, 1023 854, 841, 778, 765, 707; 1H NMR (500 MHz,
CDCl3): δ 7.91 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.47 (d,
J = 7.9 Hz, 1H), 6.0 (s, 2H), 3.57 (d, J = 2.0 Hz, 2H), 2.99
(s, 2H), 2.43 (s, 3H), 0.62–0.59 (m, 2H), 0.55–0.52 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 198.1, 197.5, 145.4,
136.0, 135.7, 135.6, 135.1, 134.0, 127.2, 127.1, 54.59, 54.51,
50.5, 50.4, 45.1, 21.9, 8.2, 7.1 ppm; HRMS (ESI, Q-ToF): m/z
calcd for C18H17O2 [M + H]+ 265.1223; found: 265.1228.

DA adduct 29: pale yellow solid; M.p. 113–115 ◦C; pre-
pared from compound 26 (200 mg, 1.16 mmol); Yield: 215 mg
(63%); IR (neat, cm−1): 2959, 1678, 1600, 1295, 1269, 1019,
782; 1H NMR (400 MHz, CDCl3): δ 7.87 (d, J = 8.0 Hz,
1H), 7.76 (s, 1H), 7.44 (d, J = 7.9 Hz, 1H), 5.9 (s, 2H), 3.46
(d, J = 2.6 Hz, 2H), 3.18 (s, 2H), 2.40 (s, 3H), 1.63–1.55 (m,
2H), 1.50–1.42 (m, 6H) ppm; 13C NMR (100 MHz, CDCl3): δ
198.5, 197.9, 145.2, 136.4, 136.3, 135.0, 134.0, 127.0, 126.9,
69.1, 57.1, 57.0, 49.8, 49.6, 32.1, 31.3, 26.0, 25.4, 21.8 ppm;
HRMS (ESI, Q-ToF): m/z calcd for C20H20NaO2 [M + Na]+
315.1356; found: 315.1352.

General procedure for the synthesis of cage propellane-
diones 28 and 30
To a stirred solution of the DA adducts 27 and 29 (200 mg,
0.75–0.68 mmol) in 250 mL of dry ethyl acetate was degassed
with nitrogen and subjected to irradiation in Pyrex immersion
well using 125 W medium pressure UV mercury-vapour lamp
(homemade) for 5 h at room temperature. After completion of
the reaction (by TLC monitoring), the solvent was removed
under vacuo and the crude product was purified by column
chromatography on silica gel using 8–10% ethyl acetate in
petroleum ether as eluent to furnish the cage diones 28 and
30 as white solids.

Cage dione 28: white solid; M.p. 114–116 ◦C; prepared from
DA adduct 27 (200 mg, 0.75 mmol); Yield: 187 mg (94%);
IR (neat, cm−1): 2959, 2867, 1762, 1601, 1495, 1442, 1219,
1075; 1H NMR (400 MHz, CDCl3): δ 5.84 (dd, J = 9.9,
0.7 Hz 1H), 5.40 (d, J = 9.9 Hz 1H), 5.08 (d, J = 1.3 Hz 1H),
3.43 (t, J = 5.1 Hz, 2H), 2.98 (t, J = 1.1 Hz, 2H), 2.29–2.26
(m, 2H), 1.77 (s, 3H), 0.74–0.70 (m, 2H), 0.65–0.61 (m, 2H)
ppm; 13C NMR (100 MHz, CDCl3): δ 211.2, 210.7, 132.6,
129.1, 120.1, 114.3, 55.3, 55.2, 51.5, 51.4, 50.5, 49.9, 49.8,
36.0, 22.5, 5.3, 4.0 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C18H16O2 [M + Na]+ 287.1043; found: 287.1056.

Cage dione 30: white solid; M.p. 155–157 ◦C; prepared
from DA adduct 29 (200 mg, 0.68 mmol); Yield: 183 mg
(92%); IR (neat, cm−1): 2962, 1761, 1452, 1219, 770, 699;
1H NMR (400 MHz, CDCl3): δ 5.81 (d, J = 9.8 Hz, 1H),
5.38 (d, J = 9.9 Hz, 1H), 5.07 (d, J = 1.1 Hz 1H), 3.34
(t, J = 4.4 Hz, 2H), 2.87 (d, J = 0.9 Hz, 2H), 2.48 (d,
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J = 2.0 Hz, 2H), 1.75 (s, 3H), 1.65–1.55 (m, 6H), 1.48–1.45
(m, 2H) ppm; 13C NMR (100 MHz, CDCl3): δ 211.1, 210.7,
132.5, 129.0, 120.2, 114.3, 63.2, 54.5, 54.4, 51.9, 51.8, 51.4,
51.3, 50.6, 49.7, 32.4, 28.1, 25.6, 25.5, 22.4 ppm; HRMS
(ESI, Q-ToF): m/z calcd for C18H16O2 [M + H]+ 293.1536;
found: 293.1545.

General procedure for the synthesis of cage propellanedi-
ols 31, 32, 33 and 34
A solution of cage diones 22, 23, 24, and 25 (0.13–0.37 mmol)
in dry methanol (10 mL), NaBH4 (0.52–1.48 mmol) was
added at 0◦C in small portions over a period of 10 min. After-
wards, the reaction mixture was stirred for another 20 min
at the room temperature. After completion of the reaction
(monitored by TLC), methanol was removed under vacuo
and the crude residue was quenched by addition of water and
was extracted with ethyl acetate. The combined organic lay-
ers were washed with brine solution, dried over anhydrous
Na2SO4 and concentrated under reduced pressure. The crude
products were obtained after evaporation of solvent followed
by purification by column chromatography on silica gel using
10–15% EtOAc in petroleum ether as eluent to yield the cage
diols 31, 32, 33 and 34 as colourless solids.

Cage diol 31: colourless solid; M.p. 134–136 ◦C; prepared
from cage dione22 (100 mg, 0.37 mmol); Yield: 95 mg (95%);
IR (neat, cm−1): 3477, 3372, 3213, 2959, 1705, 1476, 1114;
1H NMR (400 MHz, CDCl3): δ 5.65 (t, J = 2.9 Hz, 1H), 5.21
(s, 2H), 3.45 (d, J = 6.0 Hz, 2H), 2.62 (s, 2H), 2.39–2.26
(m, 2H), 2.15–2.08 (m, 2H), 1.79 (s, 3H), 1.76 (dd, J = 15.6,
7.1 Hz, 1H) 1.66–1.56 (m, 3H), 0.52–0.49 (m, 2H), 0.28–0.25
(m, 2H) ppm; 13C NMR (100 MHz, CDCl3): δ 136.1, 120.8,
75.6, 75.4, 47.7, 47.6, 47.5, 46.8, 46.7, 43.9, 43.8, 35.2, 31.3,
29.9, 24.7, 5.2, 4.4 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C18H22O2 [M + Na]+ 293.1512; found: 293.1516.

Cage diol 32: colourless solid; M.p. 207–209 ◦C; prepared
from cage dione23 (100 mg, 0.35 mmol); Yield: 85 mg (85%);
IR (neat, cm−1): 3372, 1655, 1100; 1H NMR (400 MHz,
CDCl3): δ 3.48 (s, 2H), 3.21 (s, 4H), 2.64 (s, 2H), 2.39 (d,
J = 15.2 Hz, 2H), 2.09 (s, 2H), 1.76 (s, 6H), 1.64–1.57 (m,
2H), 0.53–0.49 (m, 2H), 0.28–0.26 (m, 2H) ppm; 13C NMR
(125 MHz, CDCl3): δ 126.5, 75.4, 47.7, 47.4, 46.7, 43.5, 36.6,
31.4, 20.4, 5.2, 4.4 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C19H24NaO2 [M + Na]+ 307.1669; found: 307.1667.

Cage diol 33: colourless solid; M.p. 128–130 ◦C; prepared
from cage dione 24 (40 mg, 0.13 mmol); Yield: 31 mg
(76%); IR (neat, cm−1): 3386, 3220, 2955, 1112; 1H NMR
(400 MHz, CDCl3): δ 5.63 (d, J = 5.3 Hz, 1H), 5.00 (s, 2H),
3.44 (s, 2H), 2.53 (s, 2H), 2.38–2.25 (m, 2H), 2.05–1.98 (m,
2H), 1.78 (s, 6H), 1.64–1.54 (m, 5H), 1.52–1.46 (m, 2H), 1.15
(t, J = 6.8, 1H) ppm; 13C NMR (125 MHz, CDCl3): δ 136.1,
120.8, 75.7, 75.5, 57.4, 49.8, 49.7, 46.8, 46.0, 45.9, 43.7, 43.6,
35.3, 32.2, 30.4, 29.8, 25.8, 25.6, 24.7 ppm; HRMS (ESI, Q-
ToF): m/z calcd for C20H26NaO2 [M+Na]+ 321.1825; found:
321.1825.

Cage diol 34: colourless solid; M.p. 212–214 ◦C; prepared
from cage dione 25 (50 mg, 0.16 mmol); Yield: 45 mg (90%);

IR (neat, cm−1): 3345, 3278, 3210, 2947, 2876, 2091, 1475,
1320, 1280, 1259, 1229, 1182, 1131, 1119, 1065, 1001, 972,
868, 802; 1H NMR (400 MHz, CDCl3): δ 4.43 (s, 2H), 3.46 (s,
2H), 2.54 (s, 2H), 2.38 (d, J = 14.5 Hz, 2H), 1.98 (s, 2H), 1.80
(s, 2H), 1.75 (s, 6H), 1.61–1.56 (m, 6H), 1.48 (t, J = 6.7 Hz,
2H), 1.15 (t, J = 7.1 Hz, 2H) ppm; 13C NMR (125 MHz,
CDCl3): δ 126.4, 75.5, 49.8, 46.7, 46.0, 43.4, 36.7, 32.2, 29.8,
25.8, 25.6, 20.4 ppm; HRMS (ESI, Q-ToF): m/z calcd for
C21H28NaO2 [M + Na]+ 335.1982; found: 335.1980.

General procedure for the synthesis of cage diones 35, 36,
37 and 38 via reduction
To a stirred solution of cage diones 22, 23, 24, and 25 (0.17–
1.07 mmol) in dry ethyl acetate (5 mL) was added catalytic
amount of 10% Pd/C. Later, the cage diones were hydro-
genated using hydrogen gas (H2 balloon) under atmospheric
pressure at room temperature for 5 h. After completion of the
reaction (TLC monitoring), the reaction mixture was filtered
off with the aid of Celite pad and filtrate was concentrated
under reduced pressure. The obtained crude residue was puri-
fied by column chromatography on silica gel using 8–10%
ethyl acetate in petroleum ether as eluent to give the saturated
diones 35, 36, 37 and 38 as colourless solids.

Cage dione 35: colourless solid; M.p. 107–109 ◦C; pre-
pared from cage dione 22 (50 mg, 0.18 mmol); Yield: 45 mg
(89%); IR (neat, cm−1): 2942, 1745, 1722, 1449, 1264,
1071; 1H NMR (500 MHz, CDCl3): δ 3.08–3.04 (m, 1H),
2.98–2.91 (m, 3H), 2.20–2.13 (m, 3H), 1.77–1.68 (m, 2H),
1.56–1.46 (m, 2H), 1.35–1.27 (m, 2H), 0.96 (d, J = 6.3 Hz,
3H), 0.72–0.62 (m, 4H) ppm; 13C NMR (125 MHz, CDCl3):
δ 213.8, 213.4, 55.55, 55.52, 51.8, 49.3, 45.9, 43.4, 37.9,
32.0, 28.7, 26.5, 23.0, 5.5, 4.1 ppm; HRMS (ESI, Q-ToF):
m/z calcd for C18H20NaO2 [M + Na]+ 291.1355; found:
291.1354.

Cage dione 36: colourless solid; M.p. 160–162 ◦C; prepared
from cage dione 23 (300 mg, 1.07 mmol); Yield: 274 mg
(90%); IR (neat, cm−1): 2955, 1742, 1727, 1461, 1266,
1178, 1088; 1H NMR (500 MHz, CDCl3): 2.97–2.95 (m,
4H), 2.17–2.15 (m, 2H), 1.90 (dd, J = 13.9, 8.1 Hz, 2H),
1.79–1.75 (m, 2H), 1.30 (dd, J = 13.8, 5.1 Hz, 2H), 0.77
(d, J = 6.7, 6H), 0.70–0.67 (m, 2H), 0.65–0.61 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 213.5, 55.5, 52.2, 49.3,
46.6, 37.8, 30.59, 30.53, 16.2, 5.5, 4.1 ppm; HRMS (ESI, Q-
ToF): m/z calcd for C19H22NaO2 [M+Na]+ 305.1512; found:
305.1512.

Cage dione 37: colourless solid; M.p. 132–134 ◦C; pre-
pared from cage dione 24 (50 mg, 0.17 mmol); Yield:
43 mg (85%); IR (neat, cm−1): 2959, 2945, 1744, 1440;
1H NMR (500 MHz, CDCl3): δ 2.99–2.84 (m, 4H), 2.40
(s, 2H), 2.19–2.14 (m, 1H), 1.72–1.66 (m, 6H), 1.60–1.46
(m, 6H), 1.33–1.25 (m, 2H), 0.95 (d, J = 6.3 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 213.7, 213.3, 65.4, 54.86,
54.82, 51.2, 51.0, 48.5, 45.8, 43.2, 32.3, 32.2, 32.0, 28.7,
28.5, 26.4, 25.7, 25.6, 23.0, 22.9 ppm; HRMS (ESI, Q-ToF):
m/z calcd for C20H24NaO2 [M + Na]+ 319.1669; found:
319.1668.
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Cage dione 38: colourless solid; M.p. 169–171 ◦C; prepared
from cage dione 25 (200 mg, 0.64 mmol); Yield: 187 mg
(93%); IR (neat, cm−1): 2955, 2874, 2857, 1744, 1723,
1464, 1449, 1213; 1H NMR (500 MHz, CDCl3): 2.82–2.80
(m, 3H), 2.33–2.31 (m, 2H), 1.83 (dd, J = 14.0, 8.1 Hz,
2H), 1.71–1.67 (m, 2H), 1.60–1.56 (m, 5H), 1.53–1.46 (m,
4H), 1.23 (d, J = 4.9 Hz, 1H), 1.20 (d, J = 4.9 Hz,
1H), 0.70 (d, J = 6.8 Hz, 6H) ppm; 13C NMR (125 MHz,
CDCl3): δ 213.5, 65.3, 54.8, 51.2, 48.6, 46.5, 32.4, 30.57,
30.53, 28.5, 25.7, 25.6, 16.2 ppm; HRMS (ESI, Q-ToF):
m/z calcd for C21H26NaO2 [M + Na]+ 331.1825; found:
331.1822.

General procedure for the synthesis of cage hydroxy
ketones 39 and 40 via rearrangement
A solution of cage diones 22 and 24 (100 mg, 0.33–
0.37 mmol) and activated zinc dust (4.40–4.88 mmol) in 5 mL
glacial acetic acid was stirred at room temperature overnight.
Insoluble zinc metal and salts were removed by filtration and
the resulting filtrate was concentrated, diluted with cold water
and extracted with dichloromethane (DCM). The combined
organic layers were washed with aqueous NaHCO3 solu-
tion, brine and dried over anhydrous Na2SO4. The organic
layer was concentrated at reduced pressure to give the crude
rearranged cage hydroxyketone. The resulting crude residue
was further purified by silica gel column chromatography
using 12–15% EtOAc/PE as eluent to yield the inseparable
mixture of cage hydroxyketones 39 and 40 as colourless
liquids.

Cage hydroxy ketone 39: colourless liquid; prepared from
cage dione 22 (100 mg, 0.37 mmol); Yield: 87 mg (79%);
IR (neat, cm−1): 3376, 3267, 2976, 1759, 1747, 1242, 1031;
1H NMR (500 MHz, CDCl3): δ 5.39 (dd, J = 16.1, 6.9 Hz,
1H), 2.62–2.60 (t, J = 5.9 Hz, 1H), 2.50–2.46 (m, 1H),
2.41–2.26 (m, 4H), 2.24–2.17 (m, 1H), 2.15–2.10 (m, 1H),
2.08–2.00 (m, 1H), 1.94–1.90 (m, 2H), 1.76 (t, J = 5.5 Hz,
1H), 1.71 (d, J = 7.6 Hz, 3H) ppm; 13C NMR (125 MHz,
CDCl3): δ = 217.3, 217.2, 137.3, 137.0, 122.9, 122.1, 84.9,
84.8, 55.6, 55.0, 53.28, 53.24, 52.0, 51.9, 50.1, 48.6, 48.49,
48.40, 48.1, 46.5, 46.4, 46.07, 46.03, 33.86, 33.84, 31.0, 27.6,
27.2, 27.1, 25.1, 21.5, 6.0, 5.3 ppm; HRMS (ESI, Q-ToF):
m/z calcd for C18H20NaO2 [M + Na]+ 291.1356; found:
291.1355.

Cage hydroxy ketone 40: colourless liquid; prepared from
cage dione 24 (100 mg, 0.33 mmol); Yield: 89 mg (88%); IR
(neat, cm−1): 3525, 3457, 3098, 2949, 1750, 1449; 1H NMR
(500 MHz, CDCl3): δ 5.38 (t, J = 9.5 Hz, 1H), 2.51–2.32
(m, 3H), 2.27–2.17 (m, 4H), 2.16–2.08 (m, 3H), 1.98–1.96
(m, 1H), 1.74–1.69 (m, 4H), 1.67–1.61 (m, 2H), 1.51–1.35
(m, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ 217.4, 217.3,
137.3, 136.9, 122.9, 122.0, 84.7, 84.6, 58.64, 58.60, 56.5,
56.4, 55.3, 54.7, 52.2, 52.1, 49.1, 49.0, 48.9, 48.6, 48.3,
47.2, 47.1, 45.97, 45.94, 32.9, 31.27, 31.25, 31.12, 27.7,
27.1, 27.0, 26.14, 26.11, 25.2, 21.5 ppm; HRMS (ESI, Q-
ToF): m/z calcd for C20H24NaO2 [M+Na]+ 319.1669; found:
319.1668.

3. Results and Discussion

In connection with our major programme to design new
polycyclic cage compounds, here, we report the synthe-
sis and rearrangement of functionalized cage [4.4.2]pro-
pellanes containing a spiro linkage. The synthesis of
target propellanes commenced with the preparation of
key building blocks such as quinone derivatives 14 and
15, prepared based on literature procedures.10b, 12 Next,
the preparation of Diels–Alder (DA) dienophiles 14 and
15 was started with a commercially available hydro-
quinone 6 via a [4+2] cycloaddition, aromatization
followed by oxidation reaction by MnO2(Scheme 1).
Thermal cycloaddition of diene partners such as 2-
methyl 1,3-butadiene 8 (isoprene) and 2, 3-dimethyl
1,3-butadiene 9 under reflux conditions in anhydrous
benzene gave the DA adducts 10 and 11 in 44% and
67% yields respectively. Subsequent aromatization of
the [4+2] cycloadducts 10 and 11 in the presence
of 10% dil. HCl delivered the 1,4-naphthalenediols 12
and 13 in excellent yields (90%). Later, MnO2oxidation
of 1,4-naphthalenediols 12 and 13 at rt gave the
required quinone derivatives 14 and 15 in 68–72% yield
(Scheme 1).12

Next, the quinone derivative, 6-methylnaphthalene-
1,4-dione 2613 was prepared from DA adduct 10 via
oxidative dehydrogenation involving active MnO2 based
on the reported method.13 Various known quinones such
as 14, 15, and 2610–13 were subjected to DA reaction
with the aid of diene partners 1614 and 1714 under
bezene/toluene reflux condition in solvent to afford the
corresponding DA adducts such as 18, 19, 20 and 21
in moderate to good yields (Scheme 1). Afterwards,
these DA cycloadducts 18, 19, 20, and 21 were made to
undergo [2+2] photocycloaddition with the aid of 125 W
UV lamp under nitrogen produced the cage [4.4.2]pro-
pellanediones 22, 23, 24, and 25 in excellent (94–97%)
yields. Along similar lines, the other [4+2] cycloadducts
(DA adducts) 27 (74%) and 29 (63%) were assembled
by thermal cycloaddition15 of quinone 26 with different
dienes such as 16 and 17. Later, the DA adducts 27 and
29 were subjected to [2+2] photocycloaddition16 in dry
ethyl acetate with the aid of UV irradiation to furnish
the unsaturated cage diones 28 and 30 in excellent yields
(Scheme 2).

Having prepared the cage diones 22, 23, 24, and 25,
our next effort was directed towards the synthesis of var-
ious functionalized cage compounds by reduction and
rearrangement approach. In this regard, diones such as
22, 23, 24, and 25 were reacted with NaBH4 in the
presence of methanol at 0 ◦C for 30 min to produce
the cage diols 31, 32, 33, and 34 in 76–90% yields.
The structures of these diols 31, 32, 33, and 34 were
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Scheme 1. Synthesis of heptacyclic cage dione’s 22, 23, 24, and 25.

Scheme 2. Synthesis of heptacyclic cage diones 28 and 30.

fully supported by spectroscopic and analytical data
(1H NMR, 13C NMR and HRMS). Subsequently, hydro-
genation of these cage diones 22, 23, 24, and 25 in the
presence of 10% Pd/C under hydrogen atmosphere pro-
duced the saturated diones 35, 36, 37, and 38 in excellent

yields (Scheme 3). Finally, the structures of the cage
diones 35, 36, 37, and 38 were established by 1H NMR,
13C NMR and HRMS spectral data.
In view of literature reports7,10 as well as our cur-
rent interest in designing diverse D3-trishomocubanes
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Scheme 3. Synthesis of heptacyclic cage diol’s 31, 32, 33, 34, and cage dione’s 35, 36, 37, and 38 by reduction.

Scheme 4. Synthesis of D3-trishomocubane derivatives 39 and 40 by acid-promoted rearrangement.

by metal/acid (Zn/AcOH) via rearrangement strategy,
cage diones such as 22 and 24 were treated with acid
(Zn/AcOH). Initially, reductive cleavage of C–C bond
in cyclobutane ring gave the cage hydroxy ketones (D3-
trishomocubanes) 39 and 40 in good yields (Scheme 4).
The structures of rearranged products 39 and 40 were
supported by 1H NMR, 13C NMR and HRMS data.

4. Conclusions

In conclusion, we have prepared and presented sev-
eral new cage propellanes 22, 23, 24, 25, 28, and 30
and D3-trishomocubane derivatives 39 and 40 starting
with inexpensive and simple starting materials. We have
also studied rearrangement of these cage propellanes
with the aid of Zn/AcOH to produce D3-trishomocubane
derivatives 39 and 40. All these products were fully char-
acterized by spectroscopic and analytical data.
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