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Abstract: Retro-carbopalladation of aldimines in the presence
of a suitable b-hydrogen atom has been observed in the Pd-
catalyzed homocoupling reactions of o-bromobenzylamines,
providing an expeditious synthetic route to 5,6-dihydrophe-
nanthridine derivatives. Furthermore, a highly enantioselective
synthesis of 6-aryl-substituted 5,6-dihydrophenanthridines was
achieved in a one-pot manner by taking advantage of Rh and
Pd catalysis.

Palladium-catalyzed C�C bond cleavage through b-carbon
elimination, or retro-carbopalladation, has emerged as an
effective strategy for the activation of carbon–carbon single
bonds as well as for the development of novel synthetic
approaches over the last few decades.[1] Being thermodynami-
cally unfavorable, this process usually occurs when there is no
syn-b-hydrogen atom or in cyclic systems in which a significant
release of ring strain is possible. Retro-carbopalladation has
rarely been observed in the presence of a suitable b-hydrogen,
especially in acyclic systems (Scheme 1).[1, 2]

Recently, Satyanarayana and co-workers reported a Pd-
catalyzed homocoupling reaction of tertiary o-bromobenzyl
alcohols 1 for the preparation of chromenes 2 via the

intermediacy of palladium species A and B [Eq. (1),
Scheme 2], which delivered the final product through a mech-
anism involving a PdIV intermediate and b-carbon elimina-
tion.[3] It should be noted that when primary or secondary o-
bromobenzyl alcohols were employed, b-H elimination of the
palladacycle A occurred to give the carbonyl products 3
[Eq. (1), Scheme 2].[3a] Based on these interesting observa-
tions and our previous work on the Catellani reaction,[4] in
which formation of PdIV intermediate and retro-carbopalla-
dation of norbornene are two of the key steps,[5] we
anticipated that 5,6-dihydrophenanthridine derivatives 7,
which are prevalent structural units in natural products and
biologically active molecules,[6, 7] might be accessible if o-
bromobenzylamines 6 undergo a similar Pd-catalyzed homo-
coupling reaction as that of o-bromobenzyl alcohols
1 [Eq. (2), Scheme 2]. However, when compared with tertiary
alcohols 1, a major obstacle is that the palladacycle C as well
as the key intermediate D contain a b-hydrogen at the
benzylic position, which might form the undesired imine
products 8 a and/or 8b instead of the desired product 7.
Moreover, whereas retro-carbopalladation reactions of
ketones and alkenes are well documented,[16] retro-carbopal-
ladation of aldimines, to the best of our knowledge, has not
been uncovered to date.

Scheme 1. Pd-catalyzed b-hydride elimination versus b-carbon elimina-
tion.

Scheme 2. Previous work and proposal of this work.
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With these challenges in mind, o-bromobenzylamine 6aa
was chosen as a model substrate to test the feasibility of our
proposal (Table 1). After some screening, we were pleased to
find that the desired product 7aa, whose structure was
confirmed by X-ray crystallographic analysis,[8] was isolated in
62% yield using Pd(OAc)2 (10 mol %), PPh3 (10 mol%), and
K2CO3 (2 equiv) in toluene at 120 8C for 24 h (entry 1,
Table 1). The imine 9 a and its decomposition product 10 a
were observed as the by-products of this reaction.[9] Encour-
aged by these results, a range of reaction parameters was
examined and representative results are shown in Table 1.
Better results were obtained with Pd(dba)2 and PPh3 or
Pd(PPh3)4 (entries 2 and 3) and Pd(PPh3)4 was chosen for
further optimization. A control experiment was carried out in
the absence of the palladium catalyst and no reaction
occurred (entry 4). Changing the temperature did not lead
to an appreciable improvement (entries 5 and 6). Among the
bases surveyed, K3PO4 proved to be the best (entries 7–9).
Whereas reducing the amount of K3PO4 to 1.0 equivalent
resulted in a lower yield (entry 10), decreasing the loading of
Pd(PPh3)4 to 5 mol % maintained the yield of 7aa at 86%
upon isolation (entry 11). These conditions were used in the
remainder of the study.

The substrate scope of the Pd-catalyzed homocoupling
reaction of o-bromobenzylamines 6 was investigated
(Table 2). In addition to 4-toluenesulfonyl (Ts), other N-
sulfonyl protecting groups such as benzenesulfonyl, meth-
anesulfonyl, and 4-nitrobenzenesulfonyl can also be utilized
for this transformation. Although the 4-toluenesulfonyl and
benzenesulfonyl substituent gave comparable yields of the
corresponding products (7 aa vs. 7ba, 7ab vs. 7bb, 7ac vs.
7bc), the 4-toluenesulfonyl group was chosen for further

study for its relative ease of purification. The reactivity of o-
bromobenzylamines 6 with different aromatic substituents at
the benzylic position (Ar) was then evaluated. Monosubsti-
tuted electron-rich (7ad–7af) or electron-poor aryl groups
(7ag–7ai), a disubstituted aryl group (7 aj), and 1- or 2-
naphthyl (7 ak and 7al) were all tolerated, furnishing the
homocoupling products in moderate to excellent yields. o-
Bromobenzylamines with a heteroaromatic substituent such
as 2-methoxyquinolin-3-yl and 2- or 3-thienyl also reacted at
elevated temperature and/or with prolonged reaction time
(7am–7ao). Substitution effects on the brominated aromatic
moiety of o-bromobenzylamines 6 (R1) were also explored.
Both electron-rich and electron-poor substrates underwent
the reaction smoothly to give highly substituted 5,6-dihydro-
phenanthridine derivatives 7ea–7ja in moderate to good
yields. It is worth mentioning that the chlorine counterpart of
o-bromobenzylamine 6aa also afforded the desired product

Table 1: Optimization of reaction conditions.[a]

Entry [Pd] Base T [8C] Yield [%][b]

1[c] Pd(OAc)2/PPh3 K2CO3 120 64 (62)
2[c] Pd(dba)2/PPh3 K2CO3 120 72
3 Pd(PPh3)4 K2CO3 120 72
4[d] – K2CO3 120 n.r.
5 Pd(PPh3)4 K2CO3 110 72[e]

6 Pd(PPh3)4 K2CO3 130 76
7 Pd(PPh3)4 Na2CO3 120 12[f ]

8 Pd(PPh3)4 Cs2CO3 120 68
9 Pd(PPh3)4 K3PO4 120 86
10[g] Pd(PPh3)4 K3PO4 120 60
11[h] Pd(PPh3)4 K3PO4 120 (86)

[a] The reaction was performed using 6aa (0.1 mmol), [Pd] (10 mol%),
and base (2 equiv) in toluene (1 mL) in a microwave vial at the indicated
temperature for 24 h unless otherwise noted. [b] Determined by 1H NMR
analysis of the crude reaction mixture. Value in the parentheses is the
yield of isolated 7aa. [c] PPh3 (10 mol%) was added. [d] No palladium
catalyst was used, n.r. = no reaction. [e] 90% conversion. [f ] 16 %
conversion. [g] K3PO4 (1 equiv) was used. [h] Pd(PPh3)4 (5 mol%) was
used. Ts = 4-toluenesulfonyl, dba =dibenzylideneacetone.

Table 2: Substrate scope of the Pd-catalyzed homocoupling reaction of
o-bromobenzylamines.[a]

[a] The reaction was performed using 6 (0.3 mmol), Pd(PPh3)4 (5 mol%),
and K3PO4 (2 equiv) in toluene (1.5 mL) at 120 8C for 24 h unless
otherwise noted. Yields of isolated product 7 were given. [b] Pd(PPh3)4

(3 mol%) was used. [c] Reaction conducted at 130 8C. [d] Reaction time:
48 h. [e] Reaction time: 28 h. 4-Ns= 4-nitrobenzenesulfonyl.
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7aa in a 75 % yield when Pd(PtBu3)2 (10 mol %) was used as
the catalyst instead of Pd(PPh3)4.

[10]

Having realized the Pd-catalyzed synthesis of 6-aryl-5,6-
dihydrophenanthridine derivatives 7 from o-bromobenzyl-
amines 6, we turned our attention to the enantioselective
synthesis of these compounds. Although optically active 6-
substituted 5,6-dihydrophenanthridine derivatives have ex-
hibited interesting biological activities,[6e] no catalytic asym-
metric approach has been reported.[11] Based on Hayashi�s
pioneering work on the asymmetric arylation of imines using
Rh/chiral dienes[12,13] and our previous studies on multimetal-
catalyzed one-pot/domino reactions,[14] we envisioned that the
implementation of Rh and Pd catalysis might enable a one-
pot enantioselective synthesis of 5,6-dihydrophenanthridines
7 from o-bromobenzaldimines 4 and aryl boronic acids or
boroxines. However, compatibility issues and potential race-
mization of the sensitive benzylic stereocenter were the major
concerns. Fortunately, after extensive screening,[15] a 70%

overall yield of (S)-7aa with 99% ee was obtained when the
first step was conducted with rhodium/diene complex
[RhCl((R)-11)]2

[12b,c] as the catalyst, phenyl boroxine
(1.2 equiv of B) as the nucleophile, and 40 mol% of KOH
solution (3.0m) as the base followed by the addition of
Pd(PPh3)4 (5 mol%), K3PO4 (2 equiv), and 4 � molecular
sieves in the second step. Under these conditions, the
generality of this enantioselective one-pot reaction was
explored (Table 3). Arylboroxines containing an electron-
donating or -withdrawing group all afforded the correspond-
ing products (S)-7 ab–(S)-7 ai in moderate to good overall
yields with excellent enantioselectivity (� 99% ee). A disub-
stituted arylboroxine worked as well to give the enantiomer-
ically pure product (S)-7aj in 64 % yield. The reduced yields
in the cases of (S)-7 ac and (S)-7ak may be attributable to the
sluggish arylation of imine with sterically bulky 2-methyl-
phenylboroxine and 1-naphthylboroxine in the first step.
Highly oxygenated 5,6-dihydrophenanthridine derivatives
((S)-7ea, (S)-7ei, and (S)-7 fa), which are common scaffolds
in natural products,[6] were also obtained in good overall yield
with excellent enantioselectivity. o-Bromobenzaldimine sub-
stituted with an electron-donating group such as 5-OMe or 4-
Me are also suitable substrates for this reaction, furnishing the
corresponding products (S)-7ga, (S)-7ha, and (S)-7hh in
synthetically useful yields with > 99% ee. Dichloro-substi-
tuted 5,6-dihydrophenanthridine (S)-7ja was also obtained in
moderate yield with high enantiopurity. The absolute config-
uration of the enantiopure products 7 was unambiguously
determined to be S by X-ray diffraction analysis of (S)-7ea
and (S)-7ha.[8]

A possible mechanism for the formation of 5,6-dihydro-
phenanthridines 7 from o-bromobenzylamines 6 under palla-
dium catalysis is shown in Scheme 3.[3, 16] Oxidative addition of
o-bromobenzylamines 6 to Pd0 would form intermediate E,

Table 3: Substrate scope of enantioselective one-pot syntheses of 5,6-
dihydrophenanthridines 7 through Rh/Pd catalysis.[a]

[a] The reaction was performed on 0.3 mmol scale of 4 at 60 8C for 15 h
followed by the addition of Pd(PPh3)4 (5 mol%), 4 � molecular sieves
(300 mg), and K3PO4 (2 equiv) and stirred at 120 or 130 8C for 24–48 h
unless otherwise noted (see the Supporting Information for details).
[b] Yields of isolated product (S)-7. [c] ee was determined by HPLC using
a chiral stationary phase. [d] Reaction time of the first step: 48 h. [e] The
reaction was carried out on 1.0 mmol scale of 4. [f ] [RhCl((R)-11)]2
(5 mol%) was used, reaction time of the first step: 24 h. [g] [RhCl((R)-
11)]2 (1.5 mol%) and Pd(PPh3)4 (3 mol%) were used. Scheme 3. A possible mechanism.
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which was deprotonated to generate palladacycle F. At this
point, two pathways are possible for the generation of
intermediate I. In path a, palladacycle F undergoes oxidative
addition with a second molecule of o-bromobenzylamines 6,
affording the PdIV[16c] species G, which delivers the inter-
mediate I upon aryl–aryl reductive coupling. Alternatively,
dinuclear PdII complex H,[17] which was formed through
a transmetalation-type reaction between palladacycle F and
the palladium species E, may also afford the intermediate I
after reductive elimination (path b). b-Carbon elimination of
intermediate I then furnishes the aryl palladium species J with
concomitant formation of the imine byproduct K and its
decomposition product L. Buchwald–Hartwig amination of
intermediate J produces the final product and regenerates the
catalytically active Pd0 species.

In conclusion, we have developed a novel synthetic
approach for the rapid generation of biologically important
5,6-dihydrophenanthridine skeletons,[6] in which an unprece-
dented retro-carbopalladation of aldimines was observed. By
taking advantage of Rh and Pd catalysis, a highly enantiose-
lective synthesis of 6-aryl-substituted 5,6-dihydrophenanthri-
dine derivatives was achieved in a one-pot manner. Further
studies on extending this strategy to related processes are
being pursued in our laboratory.
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Synthesis of Enantioenriched 5,6-
Dihydrophenanthridine Derivatives
through retro-Carbopalladation of Chiral
o-Bromobenzylamines

Retro-carbopalladation of aldimines in
the presence of a suitable b-hydrogen
atom is a key step in the Pd-catalyzed
homocoupling reactions of o-bromoben-
zylamines, providing an expeditious syn-
thetic route to 5,6-dihydrophenanthridine
derivatives. A highly enantioselective
synthesis procedure was also achieved in
a one-pot manner by taking advantage of
Rh and Pd catalysis.
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