Total Synthesis of (+)-Polyzonimine

Tsutomu Sugahara, Yuuki Komatsu, and Seiichi Takano*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

(+)-Polyzonimine (1), a terpenoid insect repellent produced by a millipede, was synthesized by a reaction sequence which utilizes the asymmetric [2,3] sigmatropic rearrangement of the ammonium ylide formed from the salt (10) to generate the chiral intermediate (2).

In 1975 Smolanoff *et al.*¹ reported the isolation of a novel nitrogenous monoterpenoid, the insect repellent (+)-6,6-dimethyl-2-azaspiro[4.4]non-1-ene [(+)-polyzonimine] (1)

from the millipede *Polyzonium rosalbum*. Assignment of structure (1) for this natural product was based on the spectral analysis and the synthesis of (\pm) -polyzonimine.

We report here the total synthesis of (+)-polyzonimine (1) in which the key synthetic transformation leading to (1) is the asymmetric [2,3] sigmatropic rearrangement² of the ammonium ylide (3) to give the chiral intermediate (2). The first step in the synthesis (Scheme 1) was the Horner-Emmons reaction of the ketone (4)³ with triethyl phosphonoacetate and NaH in refluxing dimethoxyethane (DME) to give a mixture of (5) and (6) (ratio 3:2, 85%) together with the Z-isomer (7)

Scheme 1. Reagents and conditions: i, NaH (1.6 equiv.), (EtO)₂POCH₂CO₂Et (1.8 equiv.), DME, reflux, 15 h; ii, PPA (1 equiv.) on silica gel, CH₂Cl₂ (100%); iii, LiAlH₄ (1.2 equiv.), AlCl₃ (0.4 equiv.), Et₂O. 0°C, 1 h (94%); iv, PBr₃, pyridine, Et₂O, 0—25°C, 12 h; v, L-benzyloxyprolinol (1.1 equiv.), K_2 CO₃, DMSO, 25°C, 15 h [60% from (8)]; vi, PhSO₃CH₂CN (3 equiv.), acetonitrile, 25—60°C, 24 h; vii, (a) Bu¹OK, THF, DMSO, -78°C, 24 h, (b) CuSO₄.5H₂O, EtOH, 10 min [61% from (9)]; viii, nitromethane, KOH, MeOH, 25°C, 1 h; ix, methanesulphonyl chloride (6 equiv.), triethylamine, 25°C, 1.5 h [72% from (11)]; x, NaBH₄, MeOH, 0—25°C (87%); xi, (a) O₃, CH₂Cl₂, Pr¹OH, -78°C, (b) Me₂S, -78°C (88.2%); xii, ethylene glycol, triethyl orthoformate, p-MeC₆H₄SO₂OH, 25°C, 0.5 h; xiii, H₂, PtO₂ (cat.), EtOH, 25°C, 5 h; xiv, 10% HCl, THF, 25°C, 10 h [50% from (15)].

(9%).† The mixture of (5) and (6) was treated with polyphosphoric acid (PPA) on silica gel in refluxing CH₂Cl₂ for 24 h to give the desired *exo*-ester (5) exclusively by isomerization of (6).

Reduction of the *exo*-ester (5) with LiAlH₄ and AlCl₃ in Et₂O at 0 °C provided (8). Bromination of the allylic alcohol (8) with PBr₃ and pyridine in Et₂O followed by amination with L-benzyloxyprolinol and K₂CO₃ in dimethyl sulphoxide (DMSO) afforded, after alumina column chromatography, (9) in 60% overall yield. The pyrrolidine derivative (9) was converted into the quaternary salt (10) with cyanomethyl benzenesulphonate⁴ in acetonitrile. Treatment of (10) with KOBu¹ in tetrahydrofuran (THF)–DMSO at -78 °C followed by hydrolysis with CuSO₄·5H₂O in refluxing EtOH for 10 min afforded the optically active olefin-aldehyde (2) {[α]_D -7.06° (CHCl₃)} in 61% overall yield.

† All new compounds were fully characterized by spectroscopic methods (¹H n.m.r., i.r., mass). Representative spectral properties of the key compounds are as follows: compound (5), i.r. v_{max} (neat) 1720, 1650 cm⁻¹; ¹H n.m.r. δ (CDCl₃) 1.1 (s, 6H, CH₃ × 2), 1.29 (t, J 7.6 Hz, 3H, $-CO_2CH_2CH_3$), 2.97 (tt, J 2.6 and 7.2 Hz, 2H, ring CH₂), 4.20 (q, J 7.6 Hz, 2H, $-\text{CO}_2\text{C}H_2\text{CH}_3$, 5.72 (t, J 2.6 Hz, 1H, olefinic H); m/z 182 (M^+), 167, 137, 109. Compound (9), ^1H n.m.r. δ (CDCl₃) 1.00 (s, 6H, $CH_3 \times 2$), 4.49 (s, 2H, $-OCH_2Ar$), 5.30 (tt, J 2.6 and 6.8 Hz, 1H, olefinic H), 7.26 (s, 5H, ArH); m/z 313.2402 ($C_{21}H_{31}NO$ requires 313.2404). Compound (2), i.r. v_{max} (neat) 1708, 1630 cm⁻¹; ¹H n.m.r. δ (CDCl₃) 0.97 (s, 3H, CH₃), 1.07 (s, 3H, CH₃), 5.01 (dd, J 1.6 and 17.4 Hz, 1H, olefinic H), 5.25 (dd, J 1.6 and 11 Hz, 1H, olefinic H), 6.10 (dd, J 11 and 17.4 Hz, 1H, olefinic H), 9.65 (s, 1H, CHO); m/z 152.1208 (C₁₀H₁₆O requires 152.1200). Compound (15), i.r. v_{max} (neat) 1705, 1550 cm⁻¹; ¹H n.m.r. δ (CDCl₃) 1.0 (br. s, 6H, $CH_3 \times 2$), 4.30 (m, 2H, $-CH_2NO_2$), 9.62 (s, 1H, CHO); m/z (field desorption) 199 (M^+). Compound (1), i.r. ν_{max} (neat) 1620 cm $^-$; ¹H n.m.r. δ (CDCl₃) 0.88 (s, 3H, CH₃), 0.91 (s, 3H, CH₃), 1.70 (m, 8H), 3.79 (br. t, J 6.5 Hz, 2H, $-CH_2N_=$), 7.37 (br. s, 1H, $-CH=N_-$); m/z 151.1333 (C₁₀H₁₇N requires 151.1360).

The optical purity of (2) was determined by applying the methoxy(trifluoromethyl)phenylacetyl (MTPA) method.⁵ Thus, reduction of (2) with NaBH₄ in MeOH followed by treatment with (+)-MTPA chloride in CCl₄, pyridine, and 4-N,N-dimethylaminopyridine (4-DMAP) gave the corresponding (+)-MTPA ester (12). The optical purity of (12) was estimated to be 68% enantiomeric excess from ¹H and ¹⁹F n.m.r. spectra (300 MHz).

Condensation of (2) with nitromethane and KOH in MeOH followed by treatment with methanesulphonyl chloride and triethylamine in Et₂O afforded (13) in 72% overall yield. Reduction of the α,β -unsaturated nitro compound (13) with NaBH₄ in MeOH gave (14). Ozonolysis of the olefinic function of (14) by O₃ in CH₂Cl₂-PriOH at -78°C followed by treatment with Me₂S at -78 to 25°C provided (15). Protection of the formyl group of (15) as the acetal (ethylene glycol and triethyl orthoformate) followed by reduction of the nitro group with H₂ and PtO₂ in EtOH gave the corresponding amino acetal which was immediately treated with 10% HCl in THF at 25°C to give (1) by means of preparative g.c.

The synthetic polyzonimine (1) exhibited i.r. and n.m.r. spectra identical with those of the reported natural product. The optical rotation observed for synthetic polyzonimine (1) was $+ 1.95^{\circ}$ (CHCl₃) {lit., 1 [α]_D $+ 3.26^{\circ}$ (CHCl₃)}.

Received, 17th November 1983; Com. 1506

References

- 1 J. Smolanoff, A. F. Kluge, J. Meinwald, A. McPhail, R. W. Miller, K. Hicks, and T. Eisner, Science, 1975, 188, 734.
- 2 K. Hiroi and K. Nakazawa, Chem. Lett., 1980, 1077.
- 3 M. Larcheveque, A. Debal, and Th. Cureigny, *J. Organomet. Chem.*, 1975, **87**, 25.
- 4 E. B. Sanders, H. V. Secor, and J. I. Seeman, *J. Org. Chem.*, 1978, 43, 324, and references cited therein.
- 5 J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.