Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Note

Pd/C-Catalyzed coupling and cyclization of β -bromo- α , β -unsaturated carboxylic acids with terminal alkynes leading to alkylidenefuranones

Chan Sik Cho*, Hyo Bo Kim

Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, South Korea

A R T I C L E I N F O

ABSTRACT

Article history: Received 28 April 2011 Received in revised form 3 June 2011 Accepted 9 June 2011

Keywords: Alkylidenefuranones Alkynes β-Bromo-α,β-unsaturated carboxylic acids Coupling Cyclization Palladium catalyst

1. Introduction

Palladium-catalyzed carbon-carbon bond formation by the cross-coupling of terminal alkynes with organo-electrophiles such as aryl- and vinyl-halides and triflates is known as Sonogashira coupling reaction [1,2]. This protocol has been recognized as an attractive tool in synthetic organic chemistry and effectively applied to the synthesis of conjugated acetylenic compounds. Among them, the coupling reaction followed by intramolecular cyclization has been used for the construction of various heterocyclic compounds [2]. In connection with this report, several groups have reported that 2-iodobenzoic acids are coupled and cyclized with terminal alkynes in the presence of a palladium catalyst to give 5-exo-dig cyclized phthalides or 6-endo-dig cyclized isocoumarins and the product yield and distribution are varied by reaction conditions (Scheme 1) [3,4]. For example, the reactions under the conditions of Pd/CNTs-NaOAc-DABCO-DMF-H₂O and Pd/ C-PPh₃-CuI-Et₃N-EtOH preferentially afforded 5-exo-dig cyclized phthalides and 6-endo-dig cyclized isocoumarins, respectively. On the other hand, β -bromo- α , β -unsaturated aldehydes and their derivatives, which are readily prepared from the corresponding ketones by Vilsmeier-Haack reaction [5] and subsequent transformation, have been introduced for the synthesis of versatile cyclic compounds [6–25]. It has been reported by us that several carboand heterocyclic compounds can be synthesized from β -bromo- α , β unsaturated aldehydes and their derivatives in the presence of a palladium catalyst [26–32]. The present work was disclosed during the course of the extension of the palladium-catalyzed Sonogashira coupling and cyclization protocol to the reaction with β -bromo- α , β -unsaturated carboxylic acids. This report describes a palladium-catalyzed tandem coupling and cyclization of β -bromo- α , β -unsaturated carboxylic acids with terminal alkynes leading to alkylidenefuranones.

2. Results and discussion

Palladium-catalyzed coupling of β -bromo- α , β -unsaturated carboxylic acids with terminal alkynes and

subsequent regioselective 5-exo-dig cyclization produces (Z)-alkylidenefuranones in good yields.

The starting materials **3** were synthesized by initial conversion of the corresponding α -methylene containing ketones **1** into β bromovinyl aldehydes **2** under bromination conditions of Vilsmeier–Haack reaction (PBr₃/DMF/CHCl₃) [5] followed by oxidation of **2** into β -bromo- α , β -unsaturated carboxylic acids **3** by treating with NaClO₂–H₂O₂ [33] (Scheme 2).

The results of several attempted coupling and cyclization of 2bromocyclohex-1-enecarboxylic acid (**3a**) with 1-octyne (**4a**) under various reaction conditions are listed in Table 1. Treatment of **3a** with two equivalents of **4a** in 1-propanol in the presence of 10% Pd/C (5 mol% based on **3a**) and Cul (10 mol% based on **3a**) along with Bu₃N afforded (3*Z*)-4,5,6,7-tetrahydro-3-heptylideneisobenzofuran-1(3*H*)-one (**5a**) in 50% isolated yield (entry 1). The

© 2011 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +82 53 950 5586; fax: +82 53 950 6594. *E-mail address:* cscho@knu.ac.kr (C.S. Cho).

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2011.06.044

Scheme 1. 5-Exo-dig and 6-endo-dig cyclizations.

Scheme 2. Synthesis of β -Bromo- α , β -unsaturated carboxylic acids.

reaction seems to proceed via initial Sonogashira coupling between **3a** and **4a** to form usual sp^2 -carbon-*sp*-carbon coupled product and subsequent regioselective 5-exo-dig cyclization of the coupling product. No 6-endo-dig cyclized product was formed at all. The stereochemistry of 5a was unequivocally assigned by comparing the chemical shift of vinyl proton signal in ¹H NMR with that of known (3Z)-4,5,6,7-tetrahydro-3-butylideneisobenzofuran-1(3H)one [34,35]. As will be shown later, the configuration was also identified by the direct comparison of ¹H and ¹³C NMR spectrum and GC retention time of **5b** with the authentic sample prepared by our recent report [32]. Performing the reaction for a longer reaction time (40 h) gave no significant improvement in the yield of 5a (entry 2). The reaction carried out at higher temperature in a stainless autoclave also resulted in similar yield of 5a (entry 3). Among solvent examined under the employment of Bu₃N as base, 1-propanol and dioxane revealed to be the solvent of choice in terms of product **5a** yield (entries 1, 4-6). When the reaction was carried out with other bases such as K₂CO₃, NaOAc and DBU combined with 1-propanol, the synthesis of 5a did not occur effectively (entries 7-9).

After the reaction conditions had been optimized, various βbromo- α , β -unsaturated carboxylic acids **3** were subjected to the

Table 1

Optimization of conditions for the reaction of **3a** with **4a**.^a

reaction with terminal alkynes 4 in order to investigate the reaction scope, and several representative results are summarized in Table 2. The β -bromo- α , β -unsaturated carboxylic acid **3a** was readily coupled and cyclized with several terminal alkynes (4a-d) having linear and branched alkyl chains and phenyl group. Here again no 6-endo-dig cyclized products were formed at all. Methyl and phenyl substituted six-membered β -bromo- α , β -unsaturated carboxylic acids (**3b** and **3c**) were also coupled and cyclized with 1-hexyne (**4b**) to give the corresponding alkylidenefuranones (**5e** and **5f**) in similar yields. With β -bromo- α , β -unsaturated carboxylic acids (3d-g) having various ring sizes, the coupled and cyclized alkylidenefuranones (5g-i) were formed in the range of 48–68% yields without any identifiable side product, and the product yield was not significantly affected by the ring size of 3d-g. Regioisomers (3h and **3i**) exhibited different rates, and the reaction of **3h** proceeded more slowly to result in 24% yield of 5k in 40 h reaction time. The low reactivity of **3h** is ascribable to slow Sonogashira coupling reaction because the corresponding carboxylic acid was not observed in the crude mixture.

3. Conclusion

In summary, we have demonstrated that β -bromo- α , β -unsaturated carboxylic acids undergo coupling with terminal alkynes and subsequent regioselective 5-exo-dig cyclization in the presence of Pd/C and CuI to give (Z)-alkylidenefuranones in good yields. The present reaction provides a new route for (Z)-alkylidenefuranones from readily available starting ketones. Further study of synthetic applications to heterocycles by using this ketone as starting compound is in progress.

Entry	Base	Solvent	Temp (°C)	Time (h)	Isolated yield (%)
1	Bu ₃ N	1-propanol	110	20	50
2	Bu ₃ N	1-propanol	110	40	51
3 ^b	Bu ₃ N	1-propanol	135	20	52
4	Bu ₃ N	DMF	110	20	40
5	Bu ₃ N	HOCH ₂ CH ₂ OH	110	20	0
6	Bu ₃ N	dioxane	110	20	51
7	NaOAc	1-propanol	110	20	18
8	K ₂ CO ₃	1-propanol	110	20	0
9	DBU	1-propanol	110	20	0

Reaction conditions: 3a (0.5 mmol), 4a (1 mmol), 10% Pd/C (0.25 mmol), PPh3 (0.1 mmol), Cul (0.05 mmol), base (2.5 mmol), solvent (8 mL). ^b The reaction was carried out in autoclave.

Table 2

Palladium-catalyzed coupling	and cyclization of β	β-bromo-α,β-unsaturated	carboxylic acids 3	with 1-alkynes 4 . ^a

β-Bromo-α,β-unsaturated carboxylic acids $\bf 3$	1-Alkynes 4	Alkylidenefuranones 5	Yield (%)
Br GOOH	───Hex 4a	5a	51
	── Bu 4b	5b	57
	<u></u> 4c	5c	43
	≕ —Ph 4d	Ph 0 5d 0	52
Br 3b COOH	4b		68
Ph Br 3c COOH	4b	Ph- O 5f	51
GOOH Br 3d	4b	o 5g	57
Br 3e COOH	4b	5h	53
Br GOOH	4b	Si O	50
Br 3g COOH	4b	5j	48
Br 3h COOH	4b	Sk	24 ^b
Br COOH ³ⁱ	4b	51	42

^a Reaction conditions: **3** (0.5 mmol), **4** (1 mmol), 10% Pd/C (0.25 mmol), PPh₃ (0.1 mmol), CuI (0.05 mmol), Bu₃N (2.5 mmol), dioxane (8 mL), 110 °C, 20 h. ^b For 40 h.

4. Experimental

¹H and ¹³C NMR (400 and 100 MHz) spectra were recorded on a Bruker Avance Digital 400 spectrometer using TMS as an internal standard. IR spectra were measured on a Shimadzu FT IR-8400S spectrophotometer. Melting points were determined on a Standford Research Inc. MPA100 automated melting point apparatus. GLC analyses were carried out with Shimadzu GC-17A (FID) equipped with CBP10-S25-050 column (Shimadzu, a silica fused capillary column, 0.33 mm \times 25 m, 0.25 μ m film thickness) using N₂ as carrier gas. The isolation of pure products was carried out via thin layer chromatography (silica gel 60 GF₂₅₄, Merck). β -Bromo- α , β unsaturated carboxylic acids 3 were synthesized by two steps, initial treatment of ketones 1 with PBr₃/DMF/CHCl₃ [5] to produce β -bromovinyl aldehydes **2** and oxidation of **2** under NaClO₂-H₂O₂ [33]. Commercially available organic and inorganic compounds were used without further purification.

4.1. General experimental procedure

To a 50 mL stainless steel autoclave were added β -bromo- α , β unsaturated carboxylic acid (0.5 mmol), terminal alkyne (1 mmol), 10% Pd/C (0.027 g, 0.025 mmol), PPh3 (0.026 g, 0.1 mmol), CuI (0.010 g, 0.05 mmol), Bu₃N (0.463 g, 2.5 mmol) and dioxane (8 mL). The reaction mixture was allowed to react at 110 °C for 20 h. The reaction mixture was filtered through a short silica gel column (ethyl acetate-hexane mixture) to eliminate black precipitate. Removal of the solvent left a crude mixture, which was separated by thin layer chromatography (silica gel, ethyl acetate-hexane mixture) to give (*Z*)-alkylidenefuranones **5**. Except for **5a**, **5**c-f, 5l, all products prepared by the above procedure were characterized by GLC and spectroscopic comparison with authentic samples synthesized by our recent report [32].

4.1.1. (3Z)-4,5,6,7-Tetrahydro-3-heptylideneisobenzofuran-1(3H)one (**5a**)

Oil; IR (neat) 2924, 2855, 1759, 1674, 1643 cm⁻¹; ¹H NMR $(CDCl_3)$: δ 0.88 (t, J = 7.0 Hz, 3H), 1.26–1.35 (m, 6H), 1.41–1.48 (m, 2H), 1.72–1.79 (m, 4H), 2.30–2.39 (m, 6H), 5.11 (t, J = 7.8 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.28, 20.19, 21.24, 21.64, 21.91, 22.79, 26.07, 29.19, 29.40, 31.81, 110.98, 127.00, 149.28, 151.32, 170.27; HRMS (EI) Anal. Calc. for C₁₅H₂₂O₂ (M⁺): 234.1620. Found: 234.1618.

4.1.2. (3Z)-4,5,6,7-Tetrahydro-3-(3-methylbutylidene)isobenzofuran-1(3H)-one (5c)

Oil; ¹H NMR (CDCl₃): δ 0.94 (d, J = 6.6 Hz, 6H), 1.71–1.80 (m, 5H), 2.24–2.32 (m, 4H), 2.37–2.40 (m, 2H), 5.13 (t, I = 8.1 Hz, 1H); ¹³C NMR (CDCl₃): δ 20.15, 21.24, 21.61, 21.88, 22.56, 28.85, 34.90, 109.70, 127.04, 149.75, 151.26, 170.32; HRMS (FAB) Anal. Calc. for C₁₃H₁₉O₂ $([M + H]^+)$: 207.1385. Found: 207.1382.

4.1.3. (3Z)-4,5,6,7-Tetrahydro-3-benzylideneisobenzofuran-1(3H)one (5d)

Solid, m.p. 116–117 °C (from hexane) (lit [36]. 123–125 °C); ¹H NMR (CDCl₃): δ 1.75–1.86 (m, 4H), 2.35–2.38 (m, 2H), 2.48–2.52 (m, 2H), 5.87 (s, 1H), 7.27–7.32 (m, 1H), 7.36–7.40 (m, 2H); ¹³C NMR (CDCl₃): δ 20.34, 21.36, 21.69, 21.83, 108.03, 126.84, 128.71, 128.92, 130.50, 133.33, 148.19, 152.76, 170.19.

4.1.4. (3Z)-4,5,6,7-Tetrahydro-6-methyl-3-pentylideneisobenzofuran-1(3H)-one (5e)

Oil; ¹H NMR (CDCl₃): δ 0.91 (t, J = 7.2 Hz, 3H), 1.07 (d, J = 6.3 Hz, 3H), 1.31-1.48 (m, 5H), 1.76-1.89 (m, 3H), 2.32-2.40 (m, 3H), 2.44–2.51 (m, 2H), 5.11 (t, J = 7.8 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.06, 21.00, 21.34, 22.57, 25.75, 28.26, 28.55, 29.86; HRMS (FAB) Anal. Calc. for $C_{14}H_{21}O_2$ ([M + H]⁺): 221.1542. Found: 221.1544.

4.1.5. (3Z)-4,5,6,7-Tetrahydro-6-phenyl-3-pentylideneisobenzofuran-1(3H)-one (5f)

Solid, m.p. 113–114 °C (from hexane): ¹H NMR (CDCl₃): δ 0.93 (t. I = 7.2 Hz, 3H), 1.32–1.49 (m, 4H), 1.83–1.93 (m, 1H), 2.12–2.16 (m, 1H), 2.36-2.61 (m, 5H), 2.68-2.73 (m, 1H), 2.87-2.94 (m, 1H), 5.16 $(t, J = 7.8 \text{ Hz}, 1\text{H}), 7.22-7.26 \text{ (m, 3H)}, 7.32-7.36 \text{ (m, 2H)}; {}^{13}\text{C NMR}$ (CDCl₃): δ 14.07, 21.69, 22.59, 25.83, 27.79, 29.28, 31.51, 39.85, 111.56, 126.86, 126.98, 127.00, 128.87, 144.94, 149.00, 151.08, 169.77; HRMS (FAB) Anal. Calc. for C₁₉H₂₃O₂ ([M + H]⁺): 283.1698. Found: 283.1696.

4.1.6. (3Z)-4,5-Dihydro-3-pentylidenenaphtho [1,2-c]furan-1(3H)one (51)

Solid, m.p. 63–65 °C (from hexane); ¹H NMR (CDCl₃): δ 0.94 (t, J = 7.2 Hz, 3H), 1.34-1.53 (m, 4H), 2.45 (q, J = 7.6 Hz, 2H),2.71 (t, J = 8.1 Hz, 2H), 3.02 (t, J = 8.1 Hz, 2H), 5.35 (t, J = 8.0 Hz, 1H), 7.20–7.30 (m, 3H), 8.06–8.08 (m, 1H); ¹³C NMR (CDCl₃): δ 14.06, 19.98, 22.63, 26.21, 27.65, 31.48, 114.05, 123.59, 124.51, 127.35, 127.62, 128.08, 128.89, 135.06, 148.15, 149.28, 167.56; HRMS (EI) Anal. Calc. for C17H18O2 (M⁺): 254.1307. Found: 254.1307.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0005123).

References

- [1] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. (1975) 4467.
- K. Sonogashira, in: F. Diederich, A. de Meijere (Eds.), Metal-catalyzed cross-[2] coupling reactions, vol. 1, Wiley-VCH, Weinheim, 2004, pp. 319-345.
- [3] V. Subramanian, V.R. Batchu, D. Barange, M. Pal, J. Org. Chem. 70 (2005) 4778.
- [4] L. Zhou, H.-F. Jiang, Tetrahedron Lett. 48 (2007) 8449.
- R.M. Coates, P.D. Senter, W.R. Baker, J. Org. Chem. 47 (1982) 3597.
- [6] J.K. Ray, M.K. Haldar, S. Gupta, G.K. Kar, Tetrahedron 56 (2000) 909.
- Y. Zhang, J.W. Herndon, Org. Lett. 5 (2003) 2043. [7]
- [8] S.K. Mal, D. Ray, J.K. Ray, Tetrahedron Lett. 45 (2004) 277.
 [9] D. Ray, S.K. Mal, J.K. Ray, Synlett (2005) 2135.
- [10] S. Some, B. Dutta, J.K. Ray, Tetrahedron Lett. 47 (2006) 1221.
- [11] D. Rav, I.K. Rav, Tetrahedron Lett. 48 (2007) 673.
- [12] S. Some, J.K. Ray, M.G. Banwell, M.T. Jones, Tetrahedron Lett. 48 (2007) 3609.
- [13] S. Some, J.K. Ray, Tetrahedron Lett. 48 (2007) 5013.
 [14] D. Ray, S. Paul, S. Brahma, J.K. Ray, Tetrahedron Lett. 48 (2007) 8005.
- [15] D. Ray, J.K. Ray, Org. Lett. 9 (2007) 191.
- [16] R. Jana, S. Samanta, J.K. Ray, Tetrahedron Lett. 49 (2008) 851.
- S. Brahma, J.K. Ray, Tetrahedron 64 (2008) 2883. [17]
- [18] R. Jana, I. Chatterjee, S. Samanta, J.K. Ray, Org. Lett. 10 (2008) 4795.
- [19] J. Takaya, K. Sangu, N. Iwasawa, Angew. Chem. Int. Ed. 48 (2009) 7090.
- [20] P. Karthikeyan, A. Meena Rani, R. Saiganesh, K.K. Balasubramanian, S. Kabilan, Tetrahedron 65 (2009) 811.
- [21] S. Samanta, R. Jana, J.K. Ray, Tetrahedron Lett. 50 (2009) 6751.
- [22] S. Nandi, J.K. Ray, Tetrahedron Lett. 50 (2009) 6993.
- R. Jana, S. Paul, A. Biswas, J.K. Ray, Tetrahedron Lett. 51 (2010) 273. [23]
- S. Samanta, N. Yasmin, D. Kundu, J.K. Ray, Tetrahedron Lett. 51 (2010) 4132. [24]
- [25] N. Yasmin, J.K. Ray, Synlett (2010) 924.
- [26] C.S. Cho, D.B. Patel, S.C. Shim, Tetrahedron 61 (2005) 9490.
- [27] C.S. Cho, D.B. Patel, Tetrahedron 62 (2006) 6388.
- [28] C.S. Cho, H.S. Shim, Tetrahedron Lett. 47 (2006) 3835.
- [29] C.S. Cho, J.U. Kim, H.-J. Choi, J. Organomet. Chem. 693 (2008) 3677.
- [30] C.S. Cho, H.B. Kim, S.Y. Lee, J. Organomet. Chem. 695 (2010) 1744.
- [31] C.S. Cho, H.B. Kim, W.X. Ren, N.S. Yoon, Appl. Organomet. Chem. 24 (2010) 817.
- [32] C.S. Cho, H.B. Kim, Catal. Lett. 140 (2010) 116.
- E. Dalcanale, F. Montanari, J. Org. Chem. 51 (1986) 567. [33]
- S. Li, X. Fang, Z. Wang, Y. Yang, Y. Li, Synth. Commun. 23 (1993) 2051. [34] [35] M. Kobayashi, M. Fujita, H. Mitsuhashi, Chem. Pharm. Bull. 35 (1987) 1427.
- [36] M. Miura, K. Okuro, A. Hattori, M. Nomura, J. Chem. Soc. Perkin Trans. 1 (1989) 73