Table I. Effect of 6-Selenoguanosine, α -2'-Deoxy-6-thioguanosine, β -2'-Deoxy-6-thioguanosine, α -2'-Deoxy-6-selenoguanosine, and β -2'-Deoxy-6-selenoguanosine on the Growth of L-5178Y

	% survival					
Control 100%	$1.0 \times 10^{-4} M$	$1.0 \times 10^{-5} M$	$1.0 \times 10^{-6} M$			
6-Selenoguanosine	4	8	35			
α-2'-Deoxy-6-thio- guanosine	18	65	73			
β-2'-Deoxy-6-thio- guanosine	10	13	34			
α-2'-Deoxy-6-seleno- guanosine	66	78	88			
β-2'-Deoxy-6-seleno- guanosine	12	16	50			

Experimental Section[‡]

2-Amino-6-seleno-9-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythropentofuranosyl)-9H-purine (2). Condensed H_2 Se § (1.62 ml) was bubbled through a soln of 0.80 g (0.0035 g-atom) of Na in 300 ml of abs MeOH. 2-Acetamido-6-chloro-9-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythro-pentofuranosyl)-9H-purine (1) (2.26 g, 0.004 mole) was introduced into the well-stirred soln. The mixture was stirred under N_2 at room temp for 3 days. The greenish solid was collected by filtration and washed with MeOH (10 ml). The residue (2.49 g) was recrystd from MeOH to give 1.53 g (75%) of the product: mp 133–137°; uv $\lambda_{\max}^{\text{MeOH}}$ 357.5 (ϵ_{\max} 11,940), 239 nm (40,660); [α]²⁵D -88.4° (ϵ 0.206, MeOH). The analytical sample was recrystd from MeOH. Anal. ($C_{26}H_{25}N_3\text{SeO}_5\cdot\text{H}_2\text{O}$) C, H, N. The elemental analysis suggested that compound 2 is a hygroscopic hydrate.

2-Amino-9-(2'-deoxy-β-D-erythro-pentofuranosyl)-9H-purine-6-selenol (β-2'-Deoxy-6-selenoguanosine) (3). Partially protected β-2'-deoxy-6-selenoguanosine (2) (1.65 g, 0.003 mole) was introduced into a soln of 0.207 g of Na (0.009 g-atom) in 50 ml of abs MeOH, and the mixture was stirred and kept overnight under N₂. The reaction mixture was concentrated to dryness under reduced pressure. The residue was dissolved in 50 ml of ice-cold H₂O and the soln was extracted with CHCl₃ (5 × 40 ml). The aqueous layer was clarified by filtration. The clear yellow filtrate was acidified (pH 4-5) with AcOH and kept 30 min in an ice bath. The yellow solid was filtered off, washed with 5 ml of cold H₂O and 10 ml of Et₂O, and dried to give 0.57 g (54%) of 3: mp 166–167° (bubbling). Reprecipitation of 3 from Na₂CO₃ soln did not purify further the product because of its instability in aqueous soln. On tlc# the R_f value in H₂O is 0.42: uv $\lambda_{\text{max}}^{\text{PH} 1.0370.5}$ (ϵ_{max} 21,100), 270 nm (6100); $\lambda_{\text{max}}^{\text{Ha}O}$ 358 (ϵ_{max} 25,800), 263.5 nm (6200); $\lambda_{\text{max}}^{\text{PH} 11.0}$ 330 (ϵ_{max} 18,100), 225 nm (11,950). Anal. (C₁₀H₁₃O₃N₅Se·H₂O) C, H, N.

2-Acetamido-6-seleno-9-(2'-deoxy-3',5'-di-O-p-toluoyl- α -D-ery thropentofuranosyl)-9H-purine (5). Condensed H_2 Se (1.0 ml) was

bubbled through a soln of 0.3 g (0.013 g-atom) of Na in 60 ml of abs EtOH. 2-Acetamido-6-chloro-9-(2'-deoxy-3',5'-di-O-p-toluoyl- α -D-erythro-pentofuranosyl)-9H-purine (4) (2.2 g, 0.0039 mole) in 40 ml of abs EtOH was introduced into the well-stirred soln. The mixture was stirred under N₂ at room temp for 80 min. The greenish solid was collected by filtration and washed with EtOH (10 ml). The residue was recrystd from 100 ml of EtOH to give 1.6 g (67.4%) of 5: mp 139°; uv $\lambda_{\rm max}^{\rm MeOH}$ 361.5 ($\epsilon_{\rm max}$ 16,340), 239 nm (45,320); [α]²⁵D -17.16° (c 0.204, MeOH). Anal. ($C_{28}H_{27}N_s$ SeO $_6$) C, H, N. 2-Amino-9-(2'-deoxy- α -D-erythro-pentofuranosyl)-9H-purine-6-

2-Amino-9-(2'-deoxy- α -Derythro-pentofuranosyl)-9H-purine-6-selenol (α -2'-Deoxy-6-selenoguanosine) (6). 2-Acetamido-6-seleno-9-(2'-deoxy-3',5'-di-O-p-toluoyl- α -Derythro-pentofuranosyl)-9H-purine (5) (1.5 g, 0.0025 mole) was introduced into a soln of Na (0.13 g, 0.0057 g-atom) in 70 ml of abs MeOH, and the mixture was stirred and kept overnight under N₂. The reaction mixture was concentrated to dryness under reduced pressure. The residue was dissolved in 15 ml of ice-cold H₂O, and the soln was extracted with CHCl₃ (5 × 20 ml). The aqueous layer was clarified by filtration. After the clear, yellow soln was acidified (pH 5-6) with AcOH and kept 1 hr at 0°, the yellow solid was filtered off, washed with 2-3 ml of cold H₂O and 10 ml of Et₂O, and dried to give 0.6 g (70%) of 6: mp 176° (bubbling). Because of the high solubility of the compound in H₂O, it is important to use a minimum amount of ice-cold H₂O for the acid precipitation. On tlc# the R_f value in H₂O was 0.42: uv $\lambda_{\text{max}}^{\text{PH 1}}$.0 371 (ϵ_{max} 21,900), 270 nm (5700); $\lambda_{\text{max}}^{\text{H_2}}$ 357 (ϵ_{max} 25,210), 262.5 nm (5810); $\lambda_{\text{max}}^{\text{H_3}}$ 1.0 330 (ϵ_{max} 18,170) 254 nm (11,460). Anal. (C_{1} H₁₃O₃N₅Se·H₂O) C, H, N.

Effects on Cultured Mouse Leukemia Cells. The preliminary results of the tissue culture studies using L-5178Y cells are shown in Table I. The cell viability was determined by the dilute agar colony method.⁶ 6-Selenoguanosine, α -2'-deoxy-6-thioguanosine, β -2'-deoxy-6-thioguanosine, α -2'-deoxy-6-thioguanosine (6), and β -2'-deoxy-6-selenoguanosine (3) inhibited cell division and caused cell death over a range from 1.0×10^{-6} to 1.0×10^{-6} mole after 2-hr incubation. β -2'-Deoxy-6-selenoguanosine (3) was found to have activity approximately equal to β -2'-deoxy-6-thioguanosine, but the α -seleno derivative 6 was much less active than α -2 -deoxy-6-thioguanosine. Further study of these compounds is in progress. Because of the instability of 2'-deoxy-6-selenoguanosine, fresh solutions of these compounds were prepared for each use in biological studies

Acknowledgments. The authors are indebted to Dr. M. Y. Wang Chu for carrying out the tissue culture study, and to Drs. R. E. Parks, Jr., and P. Calabresi for their encouragement during the course of this investigation.

References

- (1) H. G. Mautner and J. J. Jaffe, Biochem. Pharmacol., 5, 343 (1961).
- (2) H. G. Mautner, S.-H. Chu, J. J. Jaffe, and A. C. Sartorelli, J. Med. Chem., 6, 36 (1963).
- (3) S.-H. Chu, ibid., 14, 254 (1971).
- (4) K. C. Agarwal, S.-H. Chu, A. F. Ross, A. F. Gorske, and R. E. Parks, Jr., *Pharmacologist*, 13, 210 (1971).
- (5) R. H. Iwamoto, E. M. Acton, and L. Goodman, J. Med. Chem., 6, 684 (1963).
- (6) M. Y. Chu and G. A. Fischer, Biochem. Pharmacol., 17, 753 (1968).

New Compounds

Terpene Compounds as Drugs. 13.¹ o-Terpenylaminomethylphenols and Their N-Methyl Derivatives

Arturo Donetti,* Silvano Casadio, Cecilia Molino, Graziano Bonardi, and Amedeo Omodei-Salé

Research Laboratories of Istituto De Angeli, 20139 Milan, Italy. Received February 25, 1972

The interesting properties of several phenol derivatives and terpenoid compds used in the therapy of respiratory

tract diseases have been recognized for a long time. In a search for novel expectorant and antitussive agents, we synthesized a series of o-terpenylaminomethylphenols and their N-methyl derivatives (II, X = H) (Table II). Besides, in view of some similarity between these structures and the expectorant bromhexine (N-cyclohexyl-N-methyl-2-amino-3,5-dibromobenzylamine), we also prepared compds II, where X = Br or Cl. N-Substituted salicylidenimines (I) were obtained by condensing the appropriate salicylal-dehyde with the terpenylamine. Compds I were reduced to secondary amines (II), a number of which were N-methylated with HCHO-HCOOH.

[‡]All melting points are uncorrected. Analyses were carried out at Micro-Analysis, Inc., Marshallton, Wilmington, Del., and MidWest Microlab, Inc., Indianapolis, Ind.

^{\$98.0%} minimum purity H_2Se from the Matheson Co., Inc., East Rutherford, N. J. 07073.

[#]Polygram CEL 300 PEI from Brinkmann Instruments, Inc., Westbury, N. Y.

Table I. N-Terpenylsalicylidenimines

No.	R_{i}	X	Reflux time, hr	Yield, %a	Bp (mm) or mp, °C	Formula	Analyses
1	trans-2,2,6-Trimethylcyclohexyl	H	3	85	118-120 (0.25)	C ₁₆ H ₂₃ NO	C, H, N
2	trans-2,2,6-Trimethycyclohexyl	C1	3	83	b	C ₁₆ H ₂₁ Cl ₂ NO	C, H, Cl, N
3	trans-2,2,6-Trimethylcyclohexyl	Br	3	86	125-126 ^c	$C_{16}H_{21}Br_{2}NO$	C, H, Br, N
4	α-Fenchyl	H	3	79	$120-122 (0.02)^d$	C ₁₇ H ₂₃ NO	C, H, N
5	α-Fenchyl	C1	3	80	<i>b</i>	C ₁₂ H ₂₁ Cl ₂ NO	C, H, Cl, N
6	α-Fenchyl	Br	4	85	b	C ₁₇ H ₂₁ Br ₂ NO	C, H, Br, N
7	Bornyl	H	5	80	134-136 (0.04)	C _{1.7} H _{2.3} NO	C, H, N
8	Bornyl	Cl	5	85	b	C_1 ₇ H_2 ₁ Cl_2 NO	C, H, Cl, N
9	Bornyl	Br	5	92	b	$C_{17}H_{21}Br_2NO$	C, H, Br, N
10	Menthyl	H	3	75	$122-124 (0.03)^e$	C ₁₇ H ₂₅ NO	C, H, N
11	Menthyl	Cl	5	80	<i>b</i>	C ₁₇ H ₂₃ Cl ₂ NO	C, H, Cl, N
12	Menthyl	Br	5	85	b	$C_{17}H_{23}Br_2NO$	C, H, Br, N

^aCrude product. ^bThick oil. ^cCrystallized from petroleum ether (bp 40-70°). ^dSee ref 10. ^eSee ref 11.

Table II. o-Terpenylaminomethylphenols and Their N-Methyl Derivatives

$$\begin{array}{c} R_2 \\ X \\ CH_2NR_1 \\ OH \\ II \end{array}$$

No.	$R_{_1}$	R_2	X	Yield, %	Mp, $^{\circ}$ C a	$[\alpha]^{20}D,^{b} \deg$	Formula c
13	trans-2,2,6-Trimethylcyclohexyl	Н	H	65	200-201 ^d		C ₁₆ H ₂₅ NO·HCl
14	trans-2,2,6-Trimethylcyclohexyl	H	C 1	81	203-205 ^e		$C_{16}^{10}H_{23}^{23}Cl_2NO\cdot HCl$
15	trans-2,2,6-Trimethylcyclohexyl	H	Br	65	213-215 ^e		$C_{16}H_{23}Br_{2}NO \cdot HC1$
16	α-Fenchyl	H	H	68	193-194 ^f	+13	C, H, NO · HCl
17	α-Fenchyl	H	C1	77	199-200 ^e	+12.5	$C_{17}H_{23}Cl_2NO \cdot HCl$
18	α-Fenchyl	H	Br	46	206-207 ^e	+10	$C_{17}H_{23}Br_2NO \cdot HC1$
19	Bornyl	H	H	45	178-179		$C_{17}^{17}H_{25}^{25}NO\cdot HCI$
20	Bornyl	H	Cl	57	214-215		$C_{17}H_{23}Cl_2NO\cdot HCl$
21	Bornyl	H	Br	72	220-221		$C_{17}H_{23}Br_2NO \cdot HC1$
22	Menthyl	H	Н	66	202-203	-68	C, H, NO HCI
23	Menthyl	H	Cl	78	216-217 ^d	-35	$C_{17}H_{25}Cl_2NO \cdot HCl$
24	Menthyl	H	Br	57	212-214	-34	$C_{17}H_{25}Br_2NO \cdot HC1$
25	Bornyl	CH ₃	Н	69 ^g	159-160		$C_{18}H_{27}NO \cdot HC1$
26	Bornyl	CH,	C1	56 ^h	175-176		C ₁₈ H ₂₅ Cl ₂ NO·HCl
27	Bornyl	CH ₃	Br	73 ^h	170-172		$C_{18}H_{25}Br_2NO \cdot HCl$
28	Menthyl	CH,	Н	70^i	175-176	-29	$C_{18}H_{29}NO \cdot HC1$
29	Menthyl	CH ₃	C1	86 ⁱ	174-175	-34	$C_{18}H_{27}Cl_2NO \cdot HCl$
30	Menthyl	CH ₃	Br	86 ⁱ	178-179	-30	$C_{18}H_{27}Br_2NO \cdot HCl$

^aAll compounds were isolated as HCl salts in Et₂O soln using dry HCl. ^bEtOH (c 2). ^cAll analyses were for C, H, N. ^dRecrystd from AcOEt-EtOH. ^eRecrystd from dioxane. ^gReaction time 48 hr. ^hReaction time 90 hr. ⁱReaction time 24 hr.

Antitussive tests⁴ indicated that only compounds 27 and 28 were active, their potency being distinctly inferior to that of codeine. No significant expectorant activity⁵ was observed for the title compds. In view of this, further evaluation in this area was not considered justified.

Experimental Section†

Chemistry. Intermediates. Salicylaldehyde, 3,5-dibromosalicylaldehyde, and 3,5-dichlorosalicylaldehyde were commercial products. (\pm)-Bornylamine⁶ and (-)-menthylamine⁷ were prepd as previously described by Na-EtOH redn of (\pm)-camphor oxime and (-)-menthoxime, respectively. (-)- α -Fenchylamine was prepd by H₂-PtO₂ redn of (\pm)-fenchone oxime.⁸

†Bp are uncor. Mp are cor and were taken on a Büchi capillary mp apparatus. Satisfactory ir and nmr spectra were recorded for all new compds. The purity of the compds as well as the progress of the reactions was checked by tlc on silica gel GF_{284} (E. Merck AG., Germany) using C_6H_6 -MeOH (8:2), and detecting the spots by spraying with Dragendorff's reagent.

trans-2,2,6-Trimethylcyclohexylamine. A stirred soln of 3 moles of NaOH in 100 ml of $\rm H_2O$ was cooled to -5° , and $\rm Br_2$ (144 g, 0.9 mole) was added during a 40-min period. After 30 min stirring at 0° , trans-2,2,6-trimethylcyclohexanecarboxamide $^\circ$ (144 g, 0.85 mole) was added at $15-20^\circ$, and stirring was continued at room temp for 30 min. The mixt was then heated at 100° for 40 min, cooled, and extd with $\rm Et_2O$. The $\rm Et_2O$ soln was dried (NaOH) and concd, and the residue was distd to give 83 g (69% yield) of a colorless oil, bp $67-70^\circ$ (14 mm). Anal. ($\rm C_0H_{19}N$) C, H, N.

General Methods. N-Terpenylsalicylidenimines (I) (Table I). A soln of 0.1 mole of the appropriate salicylaldehyde and 0.1 mole of the terpenylamine in 100 ml of anhyd PhH was refluxed while the H₂O azeotrope was removed with a takeoff adapter. After the H₂O had been all removed, the organic soln was evapd to dryness, and the residue was distd or used directly in the next step.

o-Terpenylaminomethylphenols (II) (Table II). A soln of 0.1 mole of the appropriate I in 300 ml of anhyd MeOH was stirred at room temp, while 0.2 mole of NaBH₄ was added portionwise. After 30 min stirring at room temp, the organic soln was poured into excess $\rm H_2O$ and extd with $\rm Et_2O$. The $\rm Et_2O$ ext was washed ($\rm H_2O$), dried (MgSO₄), and evapd to dryness, and the residue was used for further reaction without purification.

When final products, compds II were converted to their hydrochlorides and purified as shown in Table II.

N-Methyl Derivatives of o-Terpenylaminomethylphenols (Table II). To 0.1 mole of the appropriate II, 0.375 mole of 88% HCOOH, and 0.375 mole of a 35% HCHO soln were added with ∞ oling. The mixt was first heated slowly and then refluxed for a time varying from 24 to 90 hr. It was then cooled and basified with 10% KOH soln, and the basic material was filtered off or extd with Et₂O and worked up in the usual manner.

Acknowledgment. The authors wish to thank Dr. A. Gallazzi for analytical data and Mr. G. Bietti for his assistance in preparing the compounds.

References

- (1) A. Mantegani and G. Bonardi, *Chim. Ther.*, 7, in press (1972) (paper 12).
- (2) A. Burger, "Medicinal Chemistry," 3rd ed, Wiley-Interscience, New York, N. Y., 1970, p 1360.
- (3) F. Arch, Arzneim.-Forsch., 13, 480 (1963).
- (4) B. Silvestrini and C. Pozzati, Arch. Int. Pharmacodyn. Ther., 129, 249 (1960).
- (5) W. F. Perry and E. M. Boyd, J. Pharmacol. Exp. Ther., 73, 65
- (6) W. N. Krestinskii and I. I. Bardishev, J. Gen. Chem. USSR, 10, 1894 (1940); Chem. Abstr., 35, 4366³ (1941).
- (7) A. C. Cope and E. M. Acton, J. Amer. Chem. Soc., 80, 355 (1958).
- (8) W. Hückel, H. Kindler, and H. Woloski, Chem. Ber., 77B, 220 (1944).
- (9) B. Shive, J. Horeczy, G. Wash, and H. L. Lochte, J. Amer. Chem. Soc., 64, 385 (1942).
- (10) A. W. Ingersoll and H. D. De Witt, ibid., 73, 3360 (1951).
- (11) N. L. McNiven and J. Read, J. Chem. Soc., 153 (1952).

Derivatives of 3,5-Dihydro-4*H*-benzo[2,3]diazepin-4-one†

K. Nagarajan,* J. David, and R. K. Shah

CIBA Research Centre, Bombay 63, India. Received March 28, 1972

As part of a program for the synthesis and biological evaluation of potentially psychoactive compounds, we became interested in derivatives of 3,5-dihydro-4H-benzo-[2,3] diazepin-4-one, in particular, in 1, an isomer of diazepam. Compounds having the title structure and bearing a hydrogen or methyl group, respectively, at C-1 have been made by condensation of 2-formyl- and 2-phenylacetic acids with hydrazine, but their biological properties have not been described.2 We have prepared 1 and 2 by thermal cyclization of the methyl hydrazone and hydrazone, respectively, of 2-benzoyl-4-chlorophenylacetic acid. Likewise, compds 3 and 4 were prepared from 2-benzoyl-4,5dimethoxyphenylacetic acid and compd 5 from 2-acetyl-4,5-dimethoxyphenylacetic acid. A water-soluble by-product was isolated in the last reaction and was assigned the 2amino-3-isoquinolone structure 8. The guanylhydrazone 11 of 2-acetyl-4,5-dimethoxyphenylacetic acid failed to cyclize to a 2,3-diazepine derivative. Treatment of 2 and 5 with an appropriate dialkylaminoalkyl halide afforded compds 6 and 7, respectively.‡

Pharmacology. The compds examined were suspended in a 0.2% agar suspension and given orally (po) or parenterally (ip) for evaluation of the neuropharmacological profile

$$\frac{1}{3} R = CH_{3}$$

$$\frac{1}{6} R = CH_{2}CH_{2}CH_{2}N$$

$$\frac{1}{6} R = CH_{3}$$

$$\frac{1}{6} R = CH_{2}CH_{2}CH_{2}N$$

$$\frac{1}{6} R = CH_{3}$$

$$\frac{1}{6} R = Ph ; R_{1} = CH_{3}$$

$$\frac{1}{6} R = Ph ; R_{1} = H$$

$$\frac{1}{5} R = CH_{3}; R_{1} = H$$

in CF male mice. Compd 8 showed dose-dependent CNS effects of sedation, ptosis, and ataxia, and its effective dose was 100 mg/kg po and 50 mg/kg ip. In contrast to compd 9, muscular relaxation and hypotonia were not observed. Similar effects were observed with compd 5 at 250 mg/kg po and 100 mg/kg ip. Compds 1, 3, and 4 demonstrated sedation and ptosis at doses above 250 mg/kg po, but these effects were not dose dependent. Compd 1 at 50 mg/kg ip showed equal activity to compd 8. However, compd 1 required 10 times the parenteral dose to produce equivalent CNS effects by the oral route. The lethal dose in mice for compds 1, 3, 4, 5, and 8 was more than 1000 mg/kg po.

 $R = CH_3$; $R_1 = CH_2CH_2NEt_2$

Compd 2 showed no evidence of CNS activity up to 1000 mg/kg, whereas evidence of CNS stimulation was observed in compds 6 and 7. The lethal dose of 6 and 7 was 1000 mg/kg po. In mice there was no evidence of antielectroshock activity, specific antagonism to mescaline-induced "scratch stereotypy" or antagonism to the acetic acid induced writhing phenomenon, up to 100 mg/kg po.

In conclusion it appears that 1, which differs from 9 in the disposition of NCH₃ and CH₂ groups, is biologically much less active. The diminished activity of 1 and other 2,3-benzodiazepine congeners described herein, compared to the 1,4-diazepine analogs may be due to decreased basicity of the former and/or different juxtaposition of potential binding sites. The disappointing results encountered for the 2,3-diazepine series discouraged us from expanding the project, although the present method would have easily permitted the synthesis of a larger number of analogs of 1 and 3.

Experimental Section §

1-Phenyl-3-methyl-3,5-dihydro-8-chloro-4H-benzo [2,3] diazepin-4-one (1). 2-Benzoyl-4-chlorophenylacetic acid# (2 g, 7.3 mmoles) and hydrazine hydrate (0.4 g, 8 mmoles) in EtOH (10 ml) were heated under reflux for 4 hr. Evaporation of EtOH gave the oily

[†]Contribution No. 286 from CIBA Research Centre, Bombay 63, India.

[‡]After this work was completed, Wermuth and Flammang³ reported the synthesis of 1-phenyl derivatives of the title structure.

 $[\]S$ Mps are uncorrected. All compds were analyzed for C, H, and N and gave results within $\pm 0.4\%$ of the theoretical values. Ir and nmr spectral data were consistent with the structures assigned.

[#]Obtained from 1-phenyl-1-hydroxy-6-chloroindan by CrO $_{\rm 3}$ oxidation according to Nizamuddin, et al. $^{\rm 6}$